Background: Fresh shiitake mushrooms are rich in nutrients, but have high water content, a fast metabolism after harvest, and deteriorate extremely easily. Therefore, the drying of shiitake mushrooms has become a research direction. However, the role of different drying techniques on shiitake mushroom quality is limited. Therefore, the purpose of this study was to investigate the effect of thermal and non-thermal drying on the drying kinetics, and the physicochemical properties of the end product.
Results: Results showed that shiitake mushroom treated with non-thermal drying (vacuum freeze-drying) had an attractive color, low shrinkage, and uniform honeycomb structure, while the drying time was the longest and not conducive to the formation of shiitake mushroom aroma. But shiitake mushroom treated with thermal drying presents an attractive fragrance. In thermal processing technology, compared with hot air convection drying (HAD), infrared hot air convection drying (IRHAD) shortens the drying time by 37.5%, and had the highest oxidation resistance, polysaccharide content and the lowest color change. Relative-humidity drying (RHD) samples had the lowest shrinkage compared with other thermal processing technology. The five polysaccharides exhibited similar preliminary structural characteristics, but the polysaccharides obtained by IRHAD have the highest antioxidant properties.
Conclusion: These results showed that compared with thermal drying technology, non-thermal drying technology is not suitable for shiitake mushroom processing. In thermal processing technology, IRHAD is a potential drying method to obtain high-quality dried shiitake mushrooms and shiitake mushroom polysaccharide (SMP). However, it is necessary to increase the pretreatment technology to achieve the attractive appearance of non-thermal drying technology. © 2021 Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jsfa.11348 | DOI Listing |
Nat Commun
January 2025
School of Biomedical Engineering, Tsinghua Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
Cultured meat needs edible bio-scaffolds that provide not only a growth milieu for muscle and adipose cells, but also biomimetic stiffness and tissue-sculpting topography. Current meat-engineering technologies struggle to achieve scalable cell production, efficient cell differentiation, and tissue maturation in one single culture system. Here we propose an autoclaving strategy to transform common vegetables into muscle- and adipose-engineering scaffolds, without undergoing conventional plant decellularization.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
The pervasive use of petroleum-based food packaging has caused significant ecological damage due to their unsustainability and non-biodegradability. Polysaccharide-based biodegradable materials are promising alternatives, but low hydrophobicity and functional properties limit their practical applications which can be overcome by incorporation of phytochemical(s). Therefore, by leveraging the strong antioxidant and antibacterial potential of pterostilbene (PTB), we have developed PTB nanoemulsion (NE) incorporated chitosan/sodium alginate (CS/SA) film for food packaging applications.
View Article and Find Full Text PDFJ Sci Food Agric
December 2024
College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, People's Republic of China.
Background: With increasing consumer demand for healthy and sustainable food, plant proteins have been used widely in meat substitutes, dairy alternatives, and functional foods. However, in comparison with animal proteins, plant proteins often exhibit weaker functional properties, such as solubility, emulsifying, and gelation, which limit their application in food processing. The aim of this study was to investigate the effects of high-intensity ultrasound treatments (HIUTs) on the physicochemical properties, structural characteristics, emulsifying properties, and antioxidant capacity of shiitake mushroom protein isolate (SMPI).
View Article and Find Full Text PDFFood Chem
December 2024
Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, South Korea. Electronic address:
Shiitake mushrooms (Lentinula edodes) are a rich source of ergosterol, which can be converted into vitamin D, a valuable nutrient for human health. This study evaluated the enhancement of vitamin D in shiitake-mushroom powders using intense pulsed light (IPL). The initial vitamin D content of the sample was 4.
View Article and Find Full Text PDFFood Chem
February 2025
Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.. Electronic address:
The β-1,6-glucans from Lentinus edodes have a variety of biological activities. However, the research on extraction and separation of β-1,6-glucans from L. edodes is limited and the yield is low.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!