The objective of this study is to develop a simple protocol to isolate and characterise small extracellular vesicles (sEVs) from human umbilical cord-derived MSCs (hUC-MSCs). hUC-MSCs were characterised through analysis of morphology, immunophenotyping and multidifferentiation ability. SEVs were successfully isolated by ultrafiltration from the conditioned medium of hUC-MSCs. The sEVs' size distribution, intensity within a specific surface marker population were measured with zetasizer or nanoparticle tracking analysis. The expression of surface and internal markers of sEVs was also assessed by western blotting. Morphology of hUC-MSCs displayed as spindle-shaped, fibroblast-like adherent cells. Phenotypic analysis by flow cytometry revealed that hUC-MSCs expressed MSC surface marker, including CD90, CD73, CD105, CD44 and exhibited the capacity for osteogenic, adipogenic and chondrogenic differentiation. Populations of sEVs with CD9, CD63 and CD81 positive were detected with size distribution in the diameter of 63.2 to 162.5 nm. Typical sEVs biomarkers such as CD9, CD63, CD81, HSP70 and TSG101 were also detected with western blotting. Our study showed that sEVs from hUC-MSCs conditioned medium were successfully isolated and characterised. Downstream application of hUC-MSCs-sEVs will be further explored.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12033-021-00339-2 | DOI Listing |
Se Pu
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;3. University of Chinese Academy of Sciences, Beijing 100049, China.
Post-transcriptional ribonucleic acid (RNA) modifications play crucial roles in regulating gene expression, with both eukaryotic and prokaryotic RNA exhibiting more than 170 distinct and ubiquitous modifications. RNA turnover generates numerous free nucleosides, including unmodified nucleosides and a variety of modified ones. Unlike unmodified nucleosides, modified nucleosides are not further degraded or used in the salvage-synthesis pathway owing to a lack of specific enzymes, which leads to the cytosolic accumulation or cellular efflux of modified nucleosides.
View Article and Find Full Text PDFJ Control Release
December 2024
Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu 213003, China. Electronic address:
Rationale: Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene play an important role in Parkinson's disease (PD) pathogenesis, and downregulation of LRRK2 has become a promising therapy for PD. Here, we developed a synthetic biology strategy for the self-assembly and delivery of small interfering RNAs (siRNAs) of LRRK2 into the substantia nigra via small extracellular vesicles (sEVs) using a genetic circuit (in the form of naked DNA plasmid) to attenuate PD-like phenotypes in mouse model.
Methods: We generated the genetic circuit encoding both a neuron-targeting rabies virus glycoprotein (RVG) tag and a LRRK2 siRNA under the control of a cytomegalovirus (CMV) promoter, and assessed its therapeutic effects using LRRK2 mouse models of PD.
Mol Med
December 2024
Medical Oncology Translational Research Lab, Jilin Cancer Hospital, Changchun, 130012, China.
Background: Small cell lung cancer (SCLC) is a highly fatal malignancy, the complex tumor microenvironment (TME) is a critical factor affecting SCLC progression. Cancer-associated fibroblasts (CAFs) are crucial components of TME, yet their role in SCLC and the underlying mechanisms during their interaction with SCLC cells remain to be determined.
Methods: Microenvironmental cell components were estimated using transcriptome data from SCLC tissue available in public databases, analyzed with bioinformatic algorithms.
BMJ Open Ophthalmol
December 2024
Ophthalmology, National Yang Ming Chiao Tung University - Yangming Campus, Taipei, Taiwan
Aim: There remain limited therapies to treat thyroid eye disease (TED) orbital fibrosis, highlighting the urgency to develop novel targets. Transforming growth factor-β1 (TGF-β1)-induced myofibroblast transdifferentiation from orbital fibroblasts are important pathogenetic factor of TED. Endoplasmic reticulum (ER) stress may play a role in TED pathogenesis since it has been linked to liver, kidney, heart and lung fibrotic remodelling.
View Article and Find Full Text PDFSmall Struct
November 2024
Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
Taking inspiration from diverse interlocking and adhesion structures found in nature, a biaxially interlocking interface is developed in this work. This interface is formed by interconnecting two electrostatically flocked substrates and its mechanical strength is enhanced through the incorporation of enoki mushroom-shaped microfibers and deposited extracellular matrix (ECM). Tips of flocked straight fibers can be transformed into mushroom shapes through thermal treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!