Topological protection of quantum correlations opens new horizons and opportunities in quantum technologies. A variety of topological effects has recently been observed in qubit networks. However, the experimental identification of the topological phase still remains challenging, especially in the entangled many-body case. Here, we propose an approach to independently probe single- and two-photon topological invariants from the time evolution of the two-photon state in a one-dimensional array of qubits. Extending the bulk-boundary correspondence to the two-photon scenario, we show that an appropriate choice of the initial state enables the retrieval of the topological invariant for the different types of the two-photon states in the interacting Su-Schrieffer-Heeger model. Our analysis of the Zak phase reveals additional facets of topological protection in the case of collapse of bound photon pairs.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.425841DOI Listing

Publication Analysis

Top Keywords

topological protection
8
topological
6
two-photon
5
probing topology
4
topology two-photon
4
two-photon bands
4
bands time-dependent
4
time-dependent quantum
4
quantum walks
4
walks topological
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!