We present a novel, to the best of our knowledge, InGaAs/InAlAs single-photon avalanche diode (SPAD) with a triple-mesa structure. Compared with the traditional mesa structures, the horizontal distribution of the electric field decreases dramatically, while the peaks of the electric field at the mesa edges are well eliminated in the triple-mesa structure, leading to an excellent suppression of the surface leakage current and premature breakdown. Furthermore, the temperature coefficient of the breakdown voltage was measured to be as small as 37.4 mV/K within a range from 150 to 270 K. Eventually, one of the highest single-photon detection efficiencies of 35% among all the InGaAs/InAlAs SPADs with a decent dark count rate of ${3.3} \times {{10}^7}\;{\rm Hz}$ was achieved at 240 K. Combined with the inherent ease of integration of the mesa structure, this high-performance triple-mesa InGaAs/InAlAs SPAD provides an effective solution for the fabrication of SPAD arrays and the on-chip integration of quantum systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.424606 | DOI Listing |
We present a novel, to the best of our knowledge, InGaAs/InAlAs single-photon avalanche diode (SPAD) with a triple-mesa structure. Compared with the traditional mesa structures, the horizontal distribution of the electric field decreases dramatically, while the peaks of the electric field at the mesa edges are well eliminated in the triple-mesa structure, leading to an excellent suppression of the surface leakage current and premature breakdown. Furthermore, the temperature coefficient of the breakdown voltage was measured to be as small as 37.
View Article and Find Full Text PDFIn this paper, a new method combining carrier transport in semiconductors with an RF equivalent circuit was put forward to simulate the frequency response of an avalanche photodiode (APD). The main trade-off between the gain-bandwidth product (GBP) and the dark current was analyzed to optimize the structure of an APD; and a separated absorption, grading, charge, multiplication, charge, transit (SAGCMCT) structure with 120 nm balanced InAlAs multiplication layer was proposed to reduce the dark current and improve the frequency response. The fabricated triple-mesa type back-illuminated InGaAs/InAlAs APD achieved the properties of low dark current of 6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!