Soot temperature measurements in laminar flames are often performed through two-color broadband emission pyrometry (BEMI) or modulated absorption/emission (BMAE) techniques, using models to relate the ratio between flame intensities at two different wavelengths with soot temperature. To benefit from wider spectral range and increase the accuracy of experimental estimation of soot temperature, this work proposes a new approach that uses three-color broadband images captured with a basic color camera. The methodology is first validated through simulations using numerically generated flames from the CoFlame code and then used to retrieve soot temperature in an experimental campaign. The experimental results show that using three-color and BEMI provides smoother reconstruction of soot temperature than two-color and BMAE when small disturbances exist in the measured signals due to a reduced experimental noise effect. A sensitivity analysis shows that the retrieved temperature from three-color BEMI is more resilient to variations on the ratio of measured signals than BMAE, which is confirmed by an error propagation analysis based on a Monte Carlo approach.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.424529DOI Listing

Publication Analysis

Top Keywords

soot temperature
20
three-color bemi
8
measured signals
8
soot
6
temperature
6
three-wavelength broadband
4
broadband soot
4
soot pyrometry
4
pyrometry technique
4
technique axisymmetric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!