A continued rise in leafy green-linked outbreaks of disease caused by pathogenic or , particularly strains exhibiting multidrug resistance (MDR), has emerged as a major threat to human health and food safety worldwide. Thus, the present study was conducted to examine antimicrobial resistance, including MDR, in diarrhoeagenic (DEC) and isolates obtained from leafy greens from rural and urban areas of India. Of the collected samples (830), 14.1 and 6.5% yielded 117 (40 DEC and 77 non-DEC) and 54 isolates, respectively. Among the DEC pathotypes, enteroaggregative was the most prevalent (10.2 %), followed by enteropathogenic (9.4 %), enteroinvasive (7.6 %) and enterohemorrhagic (6.8 %). Antimicrobial susceptibility testing of all bacterial isolates with respect to drugs categorized as critically or highly important in both human and veterinary medicine revealed moderate to high (30-90%) resistance for amoxicillin/clavulanic acid, ampicillin, gentamycin and colistin, but relatively low resistance (>30 %) for ciprofloxacin, trimethoprim/sulfamethoxazole and fosfomycin. Notably, all DEC and more than 90% non-DEC or isolates were found to be multidrug-resistant to drugs of both human and animal importance. Overall, the results of the present study suggest that leafy greens are potential reservoirs or sources of multidrug-resistant DEC and strains in the rural or urban areas of India.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/mic.0.001059 | DOI Listing |
Food Nutr Res
December 2024
Department of Clinical Support, Lovisenberg Diaconal Hospital, Oslo, Norway.
Background: Poor dietary quality has been described as a contributor to symptoms in subjects with functional gastrointestinal (GI) symptoms. Hitherto, the focus in dietary evaluation and treatment in this patient group has mainly been on avoiding individual nutrient deficiencies, and less attention has been given to the dietary pattern and the overall food quality. Hence, we aim to describe and evaluate the dietary quality in patients with functional GI symptoms.
View Article and Find Full Text PDFPLoS One
January 2025
Produce Safety and Microbiology Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, United States of America.
Non-typhoidal Salmonella enterica is a leading cause of gastrointestinal illnesses in the United States. Among the 2,600 different S. enterica serovars, Infantis has been significantly linked to human illnesses and is frequently recovered from broilers and chicken parts in the U.
View Article and Find Full Text PDFFront Plant Sci
December 2024
College of Life Sciences, Gannan Normal University, Ganzhou, China.
Introduction: Chinese kale ( var. alboglabra), is an annual herb belonging to the Brassica genus of Cruciferae, and is one of the famous specialty vegetables of southern China. Some varieties show bright green leaf (BGL) traits and have better commerciality.
View Article and Find Full Text PDFUltrason Sonochem
January 2025
Department of Family and Consumer Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA. Electronic address:
Ultrasound technology has been increasingly explored as an eco-friendly method to improve the microbial safety of leafy greens. However, its effect on produce quality is critical, and considerable knowledge gaps remain in this area. The present study examined the response of leafy greens to ultrasound treatment as shown by tissue damage and sensory quality, using a novel multifrequency, multimode, modulated (MMM) system to address the issue of nonuniform ultrasound field distribution.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland; Centre for Climate Research SGGW, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 166, 02-787, Warsaw, Poland. Electronic address:
Air pollution is highest in winter. The high concentration of particulate matter (PM) and trace elements (TE) after the growing season is influenced by increased pollutant emissions, unfavorable meteorological conditions, and the low efficiency of air phytofiltration. Plants that can remove pollutants from the air during the growing season are leafless in autumn/winter, and therefore unable to capture PM/TE effectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!