Mid-infrared absorption spectroscopy plays an important role in molecule identification and quantification for widespread applications. Integrated photonics provides opportunities to perform spectroscopic sensing on-chip for the minimization of device size, cost, and power consumption. The integration of waveguides and photodetectors is an indispensable step toward the realization of these on-chip sensing systems. It is desired to extend the operating wavelengths of these on-chip sensing systems to the long-wave infrared (LWIR) range to utilize more molecular absorption fingerprints. However, the development of LWIR waveguide-integrated photodetectors faces challenges from both waveguide platforms due to the bottom cladding material absorption and photodetection technologies due to the low LWIR photon energy. Here, we demonstrate LWIR waveguide-integrated photodetectors through heterogeneous integration of graphene photodetectors and Si waveguides on CaF substrates. A high-yield transfer printing method is developed for flexibly integrating the waveguide and substrate materials to solve the bottom cladding material absorption issue. The fabricated Si-on-CaF waveguides show low losses in the broad LWIR wavelength range of 6.3-7.1 μm. The graphene photodetector achieves a broadband responsivity of ∼8 mA/W in these low-photon-energy LWIR wavelengths under zero-bias operation with the help of waveguide integration and plasmonic enhancement. We further integrate the graphene photodetector with a Si-on-CaF folded waveguide and demonstrate on-chip absorption sensing using toluene as an example. These results reveal the potential of our technology for the realization of chip-scale, low-cost, and low-power-consumption LWIR spectroscopic sensing systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.1c01859DOI Listing

Publication Analysis

Top Keywords

spectroscopic sensing
12
sensing systems
12
long-wave infrared
8
on-chip sensing
8
lwir waveguide-integrated
8
waveguide-integrated photodetectors
8
bottom cladding
8
cladding material
8
material absorption
8
graphene photodetector
8

Similar Publications

Deep eutectic solvents (DESs) have attracted significant attention in recent years due to its environment friendly characteristics and its participation in the multi-heteroatom doping of carbon quantum dots (CQDs). In this work, we present a simple, fast, and environment-friendly microwave synthesis approach for the synthesis of DES-assisted nitrogen and chloride co-doped CQDs (N,Cl-CQDs) using a choline chloride-urea based DES. A biomass-based precursor, i.

View Article and Find Full Text PDF

We demonstrate a broadband photothermal spectroscopy in the mid-infrared region using a quantum cascade laser frequency comb operating between ∼7.7 and ∼8.2 µm covering a frequency range of ∼70 cm.

View Article and Find Full Text PDF

Gas leak detection is one of the most vital issues in the mining and energy industries. Despite many highly specific and sensitive laser-based spectroscopic systems available on the market, the universal optical gas leak detector is still unattainable. In this paper we demonstrate the laser gas sensing setup capable of indirect detection of virtually any gas leaks using differential optical dispersion spectroscopy of oxygen near 761 nm.

View Article and Find Full Text PDF

Chemical polymerization/oligomerization opens numerous opportunities, from fundamental materials research to practical applications in catalysis, energy, sensing, and medicine. The electrochemical detection of vitamins B (folic acid) and C (ascorbic acid) requires new approaches because of low selectivity, electrode fouling, and interference from other chemicals. As an excellent material for long-term vitamin detection, oligo 3,5-diamino-1,2,4-triazole (oligo DAT) enhances the sensitivity, selectivity, and stability of sensors by creating a stable, conductive layer that facilitates electron transfer and reduces interference from common substances like glucose or uric acid.

View Article and Find Full Text PDF

Frequency-domain electromagnetic induction (EMI) is routinely used to detect the presence of seawater due to the inherent electrical conductivity of the seawater. This approach is used to infer sea-ice thickness (SIT). A time-domain EMI sensor is presented, which demonstrates the potential for correlating the spectroscopic properties of the received signal with the distance to the sea surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!