Background: Factor XII (FXII) is a serine protease that participates in the intrinsic coagulation pathway. Several studies have shown that plasma FXII exerts a deleterious role in cerebral ischemia and traumatic brain injury by promoting thrombo-inflammation. Nevertheless, the impact of FXII on neuronal cell fate remains unknown.

Objectives: We investigated the role of FXII and FXIIa in neuronal injury and apoptotic cell death.

Methods: We tested the neuroprotective roles of FXII and FXIIa in an experimental model of neuronal injury induced by stereotaxic intracerebral injection of N-methyl-D-aspartic acid (NMDA) in vivo and in a model of apoptotic death of murine primary neuronal cultures through serum deprivation in vitro.

Results: Here, we found that exogenous FXII and FXIIa reduce brain lesions induced by NMDA injection in vivo. Furthermore, FXII protects cultured neurons from apoptosis through a growth factor--like effect. This mechanism was triggered by direct interaction with epidermal growth factor (EGF) receptor and subsequent activation of this receptor. Interestingly, the "proteolytically" active and two-chain form of FXII, FXIIa, exerts its protective effects by an alternative signaling pathway. FXIIa activates the pro-form of hepatocyte growth factor (HGF) into HGF, which in turn activated the HGF receptor (HGFR) pathway.

Conclusion: This study describes two novel mechanisms of action of FXII and identifies neurons as target cells for the protective effects of single and two-chain forms of FXII. Therefore, inhibition of FXII in neurological disorders may have deleterious effects by preventing its beneficial effects on neuronal survival.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jth.15414DOI Listing

Publication Analysis

Top Keywords

fxii fxiia
16
growth factor
12
fxii
11
factor xii
8
neurons apoptosis
8
hepatocyte growth
8
neuronal injury
8
protective effects
8
factor
5
neuronal
5

Similar Publications

Qinghaienin, a novel anticoagulation protein from the hard tick Haemaphysalis qinghaiensis, inhibits the activation of factor XII by competing for anionic binding sites.

Int J Biol Macromol

December 2024

Laboratory of Molecular Medicine, Ordos Central Hospital, Inner Mongolia Autonomous Region, Ordos 017000, China; Ordos Clinical Medical College, Inner Mongolia Medical University, Ordos 017000, China; Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014000, China. Electronic address:

Salivary proteins of ticks can inhibit host hemostatic and inflammatory responses during the blood-sucking process of the parasites. A cDNA sequence, Hq021, was identified from a cDNA library of Haemaphysalis qinghaiensis. Hq021 encodes a mature protein containing 182 amino acids with a molecular mass of 20.

View Article and Find Full Text PDF

Lipopolysaccharide (LPS) is the primary pathogenic factor in Gram-negative sepsis. While the presence of LPS in the bloodstream during infection is associated with disseminated intravascular coagulation, the mechanistic link between LPS and blood coagulation activation remains ill-defined. The contact pathway of coagulation-a series of biochemical reactions that initiates blood clotting when plasma factors XII (FXII) and XI (FXI), prekallikrein (PK) and high molecular weight kininogen (HK) interact with anionic surfaces-has been shown to be activated in Gram-negative septic patients.

View Article and Find Full Text PDF

Back to basics: the coagulation pathway.

Blood Res

October 2024

Daisy Hill Hospital, 5 Hospital Road, Newry, BT35 8DR, UK.

The classic coagulation cascade model of intrinsic and extrinsic coagulation pathways, i.e. contact activation pathway and tissue factor pathway, has been widely modified.

View Article and Find Full Text PDF
Article Synopsis
  • Cleaved high-molecular-weight kininogen (HKa) serves as a biomarker for the activation of the kallikrein-kinin system (KKS) in patients with hereditary angioedema due to C1 inhibitor deficiency (HAE-C1INH).
  • The study aimed to create an HKa-specific enzyme-linked immunosorbent assay (ELISA) for monitoring KKS activation in the blood of HAE-C1INH patients, utilizing a specific antibody found through phage display.
  • Results showed that HKa levels were significantly higher in HAE-C1INH patients during attacks compared to healthy controls, indicating the potential of this ELISA for advancing drug development and understanding related diseases.
View Article and Find Full Text PDF

A single-domain antibody targeting factor XII inhibits both thrombosis and inflammation.

Nat Commun

September 2024

State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Article Synopsis
  • Factor XII (FXII) is crucial for activating the body's intrinsic coagulation pathway and has a previously unclear role in inflammation.
  • Treating male mice with a novel antibody (Nb-Fc) that targets FXII significantly reduced arterial thrombosis without disrupting normal blood clotting.
  • The study shows that inhibiting FXII can lower inflammation-related symptoms and complications during procedures like extracorporeal membrane oxygenation (ECMO), indicating its potential as a therapeutic target for thrombo-inflammatory diseases.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!