The iron-sulfur cluster coordinating transcription factor IscR is important for the virulence of Yersinia pseudotuberculosis and a number of other bacterial pathogens. However, the IscR regulon has not yet been defined in any organism. To determine the IscR regulon and identify IscR-dependent functions important for virulence, we employed chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq) of Y. pseudotuberculosis expressing or lacking following iron starvation conditions, such as those encountered during infection. We found that IscR binds to the promoters of genes involved in iron homeostasis, reactive oxygen species metabolism, and cell envelope remodeling and regulates expression of these genes in response to iron depletion. Consistent with our previous work, we also found that IscR binds to the promoter of the Ysc type III secretion system (T3SS) master regulator LcrF, leading to regulation of T3SS genes. Interestingly, comparative genomic analysis suggested over 93% of IscR binding sites were conserved between Y. pseudotuberculosis and the related plague agent Yersinia pestis. Surprisingly, we found that the IscR positively regulated Fe-S cluster biogenesis pathway was required for T3SS activity. These data suggest that IscR regulates the T3SS in through maturation of an Fe-S cluster protein critical for type III secretion, in addition to its known role in activating T3SS genes through LcrF. Altogether, our study shows that iron starvation triggers IscR to coregulate multiple, distinct pathways relevant to promoting bacterial survival during infection. How bacteria adapt to the changing environment within the host is critical for their ability to survive and cause disease. For example, the mammalian host severely restricts iron availability to limit bacterial growth, referred to as nutritional immunity. Here, we show that pathogenic use the ron-ulfur (Fe-S) luster egulator IscR, a factor critical for pathogenesis, to sense iron availability and regulate multiple pathways known or predicted to contribute to virulence. Under low iron conditions that mimic those encounter during infection, IscR levels increase, leading to modulation of genes involved in iron metabolism, stress resistance, cell envelope remodeling, and subversion of host defenses. These data suggest that IscR senses nutritional immunity to coordinate processes important for bacterial survival within the mammalian host.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262890 | PMC |
http://dx.doi.org/10.1128/mBio.00633-21 | DOI Listing |
J Am Chem Soc
December 2024
Univ Rennes, ENSCR, CNRS, ISCR-UMR6226, Université de Rennes, Rennes 35042, France.
Metal halide perovskites, including some of their related perovskitoid structures, form a semiconductor class of their own, which is arousing ever-growing interest from the scientific community. With halides being involved in the various structural arrangements, namely, pure corner-sharing MX (M is metal and X is halide) octahedra, for perovskite networks, or alternatively a combination of corner-, edge-, and/or face-sharing for related perovskitoids, they represent the ideal probe for characterizing the way octahedra are linked together. Well known for their inherently large quadrupolar constants, which is detrimental to the resolution of nuclear magnetic resonance spectroscopy, most abundant halide isotopes (Cl, Br, I) are in turn attractive for magnetic field-free nuclear quadrupolar resonance (NQR) spectroscopy.
View Article and Find Full Text PDFJ Mater Chem B
December 2024
ICGM, University of Montpellier, UMR-CNRS 5253, 34293 Montpellier, France.
We report the synthesis of multifunctional periodic mesoporous organosilica nanoparticles (PMO NPs) with substantial two-photon absorption properties and targeting capability for two-photon excitation fluorescence (TPEF) and photodynamic therapy (TPE-PDT). Prepared using an adapted sol-gel synthesis, the nanoplatforms integrated two silylated chromophores in their three-dimensional matrix to maximize non-radiative Förster resonance energy transfer from a high two-photon absorption fluorophore donor to a porphyrin derivative acceptor, leading to an enhanced generation of reactive oxygen species. Combinations of biodegradable and non-biodegradable bis(triethoxysilyl)alkoxysilanes were employed for the synthesis of the NPs, and the corresponding photophysical studies revealed high efficiency levels of FRET.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Sorbonne Université, CNRS, De la Molécule aux Nano-Objets: Réactivité, Interactions, Spectroscopies, MONARIS, Paris, 75005, France.
The distribution of isomeric species in the interstellar medium cannot be directly related to their relative energetic stabilities but more to their mechanisms of formation and evolution. The abundances of the three isomers of CHO, cyclopropenone, propynal and propadienone, are an example among many other interstellar species wherein kinetic effects control their presence in astrophysical regions. To date, only propynal and cyclopropenone, the two less stable isomers of propadienone, have been detected in the interstellar medium.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
For successful infection, the life-threatening pathogen Vibrio vulnificus elaborately regulates the expression of survival and virulence genes using various transcription factors (TFs). In this study, a library of the V. vulnificus mutants carrying specific signature tags in 285 TF genes was constructed and subjected to 16 phenotypic analyses.
View Article and Find Full Text PDFDalton Trans
December 2024
Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
The barium complex [Ba{N(SiMe)}] has been used to catalyse the dehydropolymerisation of the phosphine-functionalised hydrosilane 4-PhP-CHSiH (A) with the α,ω-diamine 1,4-(CHNHMe)-CH (C), for the production of -[Si(4-CHPPh)H-N(Me)CH-CH-CHN(Me)]- polycarbosilazanes that contain dangling phosphino groups along the polymer backbone. The comonomers A and C, specifically prepared for this purpose and comprehensively characterised, lend themselves well to barium-promoted dehydrocoupling catalysis. They allow for the formation of linear, amine-capped polymers with molecular weights in the range 4000-8000 g mol, as estimated by DOSY and H end-group NMR analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!