Precise control of intracellular redox status, i.e., maintenance of the physiological level of reactive oxygen species (ROS) for mediating normal cellular functions (oxidative eustress) while evading the excess ROS stress (distress), is central to the concept of redox medicine. In this regard, engineered nanoparticles with unique ROS generation, transition, and depletion functions have the potential to be the choice of redox therapeutics. However, it is always challenging to estimate whether ROS-induced intracellular events are beneficial or deleterious to the cell. Here, we propose the concept of redox buffering capacity as a therapeutic index of engineered nanomaterials. As a steady redox state is maintained for normal functioning cells, we hypothesize that the ability of a nanomaterial to preserve this homeostatic condition will dictate its therapeutic efficacy. Additionally, the redox buffering capacity is expected to provide information about the nanoparticle toxicity. Here, using citrate-functionalized trimanganese tetroxide nanoparticles (C-MnO NPs) as a model nanosystem, we explored its redox buffering capacity in erythrocytes. Furthermore, we went on to study the chronic toxic effect (if any) of this nanomaterial in the animal model to co-relate with the experimentally estimated redox buffering capacity. This study could function as a framework for assessing the capability of a nanomaterial as redox medicine (whether maintains eustress or damages by creating distress), thus orienting its application and safety for clinical use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.1c00402 | DOI Listing |
J Nutr
January 2025
Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London. Electronic address:
This perspective discusses that the essential micronutrient zinc has functions in over 3000 human proteins (the zinc proteome), and the implications of three aspects to ascertain an adequate zinc status for human health. First, the advent of highly sensitive fluorescent (bio)chemicals revealed cellular pools of zinc ions involved in signalling and secretion from cells for paracrine, autocrine, and possibly endocrine functions. Zinc signalling adds a yet unaccounted number of targeted proteins to the already impressive number of zinc proteins.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Taub Institute for Research in Alzheimer's Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY, USA.
Background: Oxidative stress has been implicated in the pathogenesis of Alzheimer's disease (AD). Nevertheless, whether redox perturbations are associated with cognition and AD pathology in the preclinical AD stages, remains unclear. We examined associations of blood redox markers with AD biomarkers and cognitive performance in older adults without clinical dementia.
View Article and Find Full Text PDFMol Carcinog
January 2025
Department of Neurosurgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, The People's Republic of China.
RNF7 (Ring Finger Protein 7) is a key component of CRLs (Cullin-RING-type E3 ubiquitin ligases) and has been found to possess intrinsic anti-ROS capabilities. Aberrant expression of RNF7 has been observed in various tumor types and is known to significantly influence tumor initiation and progression. However, the specific role of RNF7 in glioblastoma remains unclear.
View Article and Find Full Text PDFSci Rep
December 2024
School of Environmental Science, The University of Shiga Prefecture, Hassakacho, Hikone, 2500, 522-8533, Japan.
Mangrove forests are increasingly recognized as vital blue carbon ecosystems due to their high carbon sequestration capacity, primarily through the accumulation of soil organic carbon (SOC). Recent research highlights that, in addition to SOC, dissolved inorganic carbon (DIC), particularly in the form of bicarbonate (HCO₃⁻), plays a crucial role in carbon sequestration by being exported from these ecosystems to adjacent coastal waters. This study aims to investigate the previously unexamined mechanisms behind bicarbonate production in mangrove soils.
View Article and Find Full Text PDFBiosens Bioelectron
March 2025
Cnam, SATIE Laboratory, UMR, CNRS 8029, 292 rue Saint Martin, 75003, Paris, France. Electronic address:
This study aims to demonstrate that redox couples, regardless of their electrical charges, are unnecessary for detecting and quantifying electroactive proteins using an electrochemical sensor functionalized with a molecularly imprinted polymer. Our approach involved designing a polydopamine imprinted biosensor for detecting bovine serum albumin as the model protein. Electrochemical measurements were conducted in a phosphate-buffered solution (PBS) and solutions containing the negatively charged hexacyanoferrate, the neutral ferrocene, or the positively charged hexaammineruthenium (III) probes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!