Changes to mitochondrial architecture are associated with various adaptive and pathogenic processes. However, quantification of changes to mitochondrial structures is limited by the yet unmet challenge of defining the borders of each individual mitochondrion within an image. Here, we describe a novel method for segmenting primary brown adipocyte (BA) mitochondria images. We describe a granular approach to quantifying subcellular structures, particularly mitochondria in close proximity to lipid droplets: peridroplet mitochondria. In addition, we lay out a novel machine-learning-based mitochondrial segmentation method that eliminates the bias of manual mitochondrial segmentation and improves object recognition compared to conventional thresholding analyses. By applying these methods, we discovered a significant difference between cytosolic and peridroplet BA mitochondrial HO production and validated the machine-learning algorithm in BA via norepinephrine-induced mitochondrial fragmentation and comparing manual analyses to the automated analysis. This approach provides a high-throughput analysis protocol to quantify ratiometric probes in subpopulations of mitochondria in adipocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-1266-8_22DOI Listing

Publication Analysis

Top Keywords

changes mitochondrial
8
mitochondrial segmentation
8
mitochondrial
6
mitochondria
5
high-throughput image
4
image analysis
4
analysis lipid-droplet-bound
4
lipid-droplet-bound mitochondria
4
mitochondria changes
4
mitochondrial architecture
4

Similar Publications

Background: Plant senescence is a genetically controlled process that results in the programmed death of plant cells, organs, or the entire plant. This process is essential for nutrient recycling and supports the production of plant offspring. Environmental stresses such as drought and heat can hasten senescence, reducing photosynthetic efficiency and significantly affecting crop quality and yield.

View Article and Find Full Text PDF

Mitochondria-Associated Endoplasmic Reticulum Membranes in Microglia: One Contact Site to Rule Them all.

Contact (Thousand Oaks)

January 2025

Department of Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain.

Microglia, the resident immune cells of the central nervous system (CNS), play a crucial role in maintaining tissue homeostasis by monitoring and responding to environmental changes through processes such as phagocytosis, cytokine production or synapse remodeling. Their dynamic nature and diverse functions are supported by the regulation of multiple metabolic pathways, enabling microglia to efficiently adapt to fluctuating signals. A key aspect of this regulation occurs at mitochondria-associated ER membranes (MAM), specialized contact sites between the ER and mitochondria.

View Article and Find Full Text PDF

Purpose: The study aims to investigate the therapeutic effects of the aqueous extract of Atractylodes macrocephala Koidz. (AEA) on dexamethasone (Dex) -induced sarcopenia in mice and to explore its possible mechanisms of action.

Methods: This study utilized bioinformatics analysis to explore the primary pathogenic mechanisms of age-related sarcopenia and Dex-induced muscle atrophy.

View Article and Find Full Text PDF

Circadian rhythms driven by biological clocks regulate physiological processes in all living organisms by anticipating daily geophysical changes, thus enhancing environmental adaptation. Time-resolved serial multi-omic analyses in vivo, ex vivo, and in synchronized cell cultures have revealed rhythmic changes in the transcriptome, proteome, and metabolome, involving up to 50 % of the mammalian genome. Mitochondrial oxidative metabolism is central to cellular bioenergetics, and many nuclear genes encoding mitochondrial proteins exhibit both circadian and ultradian oscillatory expression.

View Article and Find Full Text PDF

Dysregulation of genes encoding the homologous to E6AP C-terminus (HECT) E3 ubiquitin ligases has been linked to cancer and structural birth defects. One member of this family, the HECT-domain-containing protein 1 (HECTD1), mediates developmental pathways, including cell signaling, gene expression, and embryogenesis. Through GeneMatcher, we identified 14 unrelated individuals with 15 different variants in HECTD1 (10 missense, 3 frameshift, 1 nonsense, and 1 splicing variant) with neurodevelopmental disorders (NDDs), including autism, attention-deficit/hyperactivity disorder, and epilepsy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!