Background: Future innovations in science and technology with an impact on multimodal breast cancer management from a surgical perspective are discussed in this narrative review. The work was undertaken in response to the Commission on the Future of Surgery project initiated by the Royal College of Surgeons of England.

Methods: Expert opinion was sought around themes of surgical de-escalation, reduction in treatment morbidities, and improving the accuracy of breast-conserving surgery in terms of margin status. There was emphasis on how the primacy of surgical excision in an era of oncoplastic and reconstructive surgery is increasingly being challenged, with more effective systemic therapies that target residual disease burden, and permit response-adapted approaches to both breast and axillary surgery.

Results: Technologies for intraoperative margin assessment can potentially half re-excision rates after breast-conserving surgery, and sentinel lymph node biopsy will become a therapeutic procedure for many patients with node-positive disease treated either with surgery or chemotherapy as the primary modality. Genomic profiling of tumours can aid in the selection of patients for neoadjuvant and adjuvant therapies as well as prevention strategies. Molecular subtypes are predictive of response to induction therapies and reductive approaches to surgery in the breast or axilla.

Conclusion: Treatments are increasingly being tailored and based on improved understanding of tumour biology and relevant biomarkers to determine absolute benefit and permit delivery of cost-effective healthcare. Patient involvement is crucial for breast cancer studies to ensure relevance and outcome measures that are objective, meaningful, and patient-centred.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bjs/znab147DOI Listing

Publication Analysis

Top Keywords

breast cancer
8
breast-conserving surgery
8
surgery
7
breast
5
innovations future
4
future breast
4
breast surgery
4
surgery background
4
background future
4
future innovations
4

Similar Publications

Background: Primary luminal breast cancer cells lose their identity rapidly in standard tissue culture, which is problematic for testing hormone interventions and molecular pathways specific to the luminal subtype. Breast cancer organoids are thought to retain tumor characteristics better, but long-term viability of luminal-subtype cases is a persistent challenge. Our goal was to adapt short-term organoids of luminal breast cancer for parallel testing of genetic and pharmacologic perturbations.

View Article and Find Full Text PDF

Background: Triple negative breast cancer (TNBC) belongs to the worst prognosis of breast cancer subtype probably because of distant metastasis to other organs, e.g. lungs.

View Article and Find Full Text PDF

Tumor microenvironment and immunotherapy for triple-negative breast cancer.

Biomark Res

December 2024

Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.

Triple-negative breast cancer (TNBC) is a subtype of breast cancer known for its high aggressiveness and poor prognosis. Conventional treatment of TNBC is challenging due to its heterogeneity and lack of clear targets. Recent advancements in immunotherapy have shown promise in treating TNBC, with immune checkpoint therapy playing a significant role in comprehensive treatment plans.

View Article and Find Full Text PDF

Introduction: Breast cancer is the leading cause of cancer amongst women in the United Kingdom, with implant-based reconstruction (IBR) using Acellular Dermal Matrices (ADM) gaining popularity for post-mastectomy procedures. This study compares outcomes of different ADMs that are commonly used in women undergoing IBR, this was short and long-term complications.

Methods: A systematic search of MEDLINE, Embase, CENTRAL, and CDSR databases was performed according to the PRISMA guidelines, focusing on women undergoing IBR with FlexHD, AlloDerm, Bovine, or Porcine ADMs.

View Article and Find Full Text PDF

Over the past few decades, microtubules have been targeted by various anticancer drugs, including paclitaxel and eribulin. Despite their promising effects, the development of drug resistance remains a challenge. We aimed to define a novel cell death mechanism that targets microtubules using eribulin and to assess its potential in overcoming eribulin resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!