Cytokines' secretion from the decidua and trophoblast cells has been known to regulate trophoblast cell functions, such as Extravillous trophoblasts (EVTs) cell migration and invasion and remodeling of spiral arteries. Defective angiogenesis and spiral arteries transformation are mainly caused by proinflammatory cytokines and excessive thrombin generation during preeclampsia. Monocyte chemotactic protein-1 (MCP-1), a crucial cytokine, has a role in maintaining normal pregnancy. In this study, we explored whether thrombin regulates the secretion of MCP-1 in HTR-8/SVneo cells; if yes, what is its function? We used HTR-8/SVneo cells, developed from first trimester villous explants of early pregnancy, as the model of EVTs. MCP-1 gene silencing was performed using gene-specific siRNA. qPCR and ELISA were performed to estimate the expression and secretion of MCP-1. Here, we found that thrombin enhanced the secretion of MCP-1 in HTR-8/SVneo cells. Proteinase-activated receptor-1 (PAR-1) was found as the primary receptor, regulating MCP-1 secretion in these cells. Furthermore, MCP-1 secretion is modulated via protein kinase C (PKC) α, β, and Rho/Rho-kinase-dependent pathways. Thrombin negatively regulates HTR-8/SVneo cells' ability to mimic tube formation in an MCP-1 dependent manner. In conclusion, we propose that thrombin-controlled MCP-1 secretion may play an essential role in normal placental development and successful pregnancy maintenance. Improper thrombin production and MCP-1 secretion during pregnancy might cause inadequate vascular formation and transformation of spiral arteries, which may contribute to pregnancy disorders, such as preeclampsia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.repbio.2021.100516 | DOI Listing |
MedComm (2020)
January 2025
Department of Oncology Shanghai Medical College, Fudan University Shanghai China.
Cancer-associated fibroblasts (CAFs) are intrinsic components of the tumor microenvironment that promote cancer progression and metastasis. Through an unbiased integrated analysis of gastric tumor grade and stage, we identified a subset of proangiogenic CAFs characterized by high podoplanin (PDPN) expression, which are significantly enriched in metastatic lesions and secrete chemokine (CC-motif) ligand 2 (CCL2). Mechanistically, PDPN(+) CAFs enhance angiogenesis by activating the AKT/NF-κB signaling pathway.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
January 2025
Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China.
Arterial stiffening is a hallmark of chronic kidney disease (CKD) related cardiovascular events and is primarily attributed to the elevated matrix stiffness. Stiffened arteries are accompanied by low-grade inflammation, but the causal effects of matrix stiffness on inflammation remain unknown. For analysis of the relationship between arterial stiffness and vascular inflammation, pulse wave velocity (PWV) and aortic inflammatory markers were analyzed in an adenine-induced mouse model of CKD in chronological order.
View Article and Find Full Text PDFEnviron Pollut
January 2025
SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing, China. Electronic address:
The biological pathways connecting ambient fine particulate matter (PM)-induced initial adverse effects to the development of atherosclerotic cardiovascular diseases are not fully understood. We hypothesize that lysoglycerophospholipids (LysoGPLs) are pivotal mediators of atherosclerosis induced by exposure to PM. This study investigated the changes of LysoGPLs in response to PM exposure and the mediation role of LysoGPLs in the pro-atherosclerotic effects of PM exposure.
View Article and Find Full Text PDFSci Rep
January 2025
Harbin Medical University, Harbin, Heilongjiang Province, China.
Interstitial lung disease (ILD) is known to be a major complication of systemic sclerosis (SSc) and a leading cause of death in SSc patients. As the most common type of ILD, the pathogenesis of idiopathic pulmonary fibrosis (IPF) has not been fully elucidated. In this study, weighted correlation network analysis (WGCNA), protein‒protein interaction, Kaplan-Meier curve, univariate Cox analysis and machine learning methods were used on datasets from the Gene Expression Omnibus database.
View Article and Find Full Text PDFCancer Cell
December 2024
National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214000, China; Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, China. Electronic address:
Glioblastoma is a highly aggressive primary brain tumor with glioblastoma stem cells (GSCs) enforcing the intra-tumoral hierarchy. Plasma cells (PCs) are critical effectors of the B-lineage immune system, but their roles in glioblastoma remain largely unexplored. Here, we leverage single-cell RNA and B cell receptor sequencing of tumor-infiltrating B-lineage cells and reveal that PCs are aberrantly enriched in the glioblastoma-infiltrating B-lineage population, experience low level of somatic hypermutation, and are associated with poor prognosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!