A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dysregulated APP expression and α-secretase processing of APP is involved in manganese-induced cognitive impairment. | LitMetric

Dysregulated APP expression and α-secretase processing of APP is involved in manganese-induced cognitive impairment.

Ecotoxicol Environ Saf

Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China. Electronic address:

Published: September 2021

Excessive exposure to manganese (Mn) can cause cognitive impairment, a common feature of Alzheimer's disease (AD), but the mechanisms remain unclear. Amyloid precursor protein (APP) is key to AD pathogenesis, and whether APP and its secretase processing are involved in Mn-induced cognitive impairment remains unknown. In the present study, we established a model of Mn-induced neurotoxicity in vivo (male C57BL/6, 0-100 mg/kg Mn, 90 days, gastric gavage) and in vitro (Neuro-2a (N2a) cells, 0-800 μM Mn for 24 h; APP overexpression and APP shRNA N2a cells, 0 and 800 μM Mn for 24 h). We found impaired cognition of Mn-treated mice. Both in vivo and in vitro results consistently showed that Mn exposure inhibited the expression of APP, α-secretase, soluble APP alpha protein (sAPPα), and synapse proteins as well as the activity of α-secretase. However, Mn exposure showed no effect on the protein levels of β-secretase, Aβ40, and Aβ42 or the activity of β-secretase. Collectively, these findings demonstrate key roles of APP and its α-secretase processing in the regulation of Mn-induced cognitive impairment, which may act as a target for ameliorating Mn-induced neurotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2021.112365DOI Listing

Publication Analysis

Top Keywords

cognitive impairment
16
α-secretase processing
8
app
8
mn-induced cognitive
8
mn-induced neurotoxicity
8
n2a cells
8
app α-secretase
8
dysregulated app
4
app expression
4
α-secretase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!