Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Understanding the combined effects of soil amendments and inoculation of mycorrhizal fungi on the response of different plant species during the phytostabilization process of trace elements contaminated soils is a challenge. This task is more difficult but more realistic when studied under field conditions. We assess the combined effects of two amendment doses and mycorrhizal inoculation on the response of saplings of two tree species planted in a contaminated field. The amendments were a mix of sugar beet lime and biosolid compost. The inoculation treatments were made with a commercial inoculum of arbuscular mycorrhizal fungi for wild olive and ectomycorrhizal fungi for stone pine. Results showed a weak or null effect of the mycorrhizal inoculation on plant growth, survival and trace element accumulation. There was a significant increase on P nutrition for stone pine, growing on non-amended conditions. Soil amendments were very effective reducing trace elements availability and their accumulation in both plant species, especially in roots. However, the effects on plant biomass were species-dependent and contrasted; low-dose amendments increased the biomass of wild olive by 33.3%, but reduced by 28% that of pine. The high doses of amendments (60 T ha) produced some negative effects on plant growth and nutrition, probably related to the increase of soil salinity. Both plant species, stone pine and wild olive, have been proved to be adequate for phytostabilization of contaminated soils under Mediterranean climate, due to their drought tolerance and the low transfer of trace elements from root to shoot, thus reducing toxicity for the food web. To implement microbial-assisted phytoremediation approaches, a better understanding of the diversity and ecology of plant-associated microorganisms is needed. The use of indigenous fungi, locally adapted and tolerant to contamination, would be more suitable for phytostabilization purposes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.147943 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!