Facile bioinspired synthesis of iron oxide encapsulating silica nanocapsules.

J Colloid Interface Sci

Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072 Australia. Electronic address:

Published: November 2021

Iron oxide nanoparticles have been extensively studied for a wide variety of applications. However, there remains a challenge in developing hierarchical magnetic iron oxide nanoparticles as existing synthetic techniques require harsh, toxic chemical conditions and high temperatures or give poorly defined product with weak magnetic properties. In addition, drug loading is limited to post-loading methods such as chemical conjugation or surface adsorption that have poor loading efficiency and are prone to premature drug release. We report a facile biomimetic method for making iron oxide nanoparticle-loaded silica nanocapsules based on a bimodal catalytic peptide surfactant stabilized nanoemulsion template. Iron oxide nanoparticles can be preloaded into the oil phase of the nanoemulsion at tunable concentrations, and the excellent surface activity of the designed bimodal peptide in combination with sufficient electrostatic repulsion promotes the stability of the nanoemulsions. Biosilicification induced by the catalytic peptide module leads to the formation of silica shell nanocapsules containing a magnetic oil core. The bioinspired silica nanocapsules encapsulating iron oxide nanoparticles demonstrate the next-generation of magnetic nanostructures for drug delivery applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.05.021DOI Listing

Publication Analysis

Top Keywords

iron oxide
24
oxide nanoparticles
16
silica nanocapsules
12
catalytic peptide
8
iron
6
oxide
6
facile bioinspired
4
bioinspired synthesis
4
synthesis iron
4
oxide encapsulating
4

Similar Publications

Proteomic analysis of Trichoderma harzianum secretome and their role in the biosynthesis of zinc/iron oxide nanoparticles.

Sci Rep

January 2025

Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, 7600, Argentina.

The fungal green synthesis of nanoparticles (NPs) has gained great interest since it is a cost-effective and easy handling method. The process is simple because fungi secrete metabolites and proteins capable of reducing metal salts in aqueous solution, however the mechanism remains largely unknown. The aim of this study was to analyze the secretome of a Trichoderma harzianum strain during the mycobiosynthesis process of zinc and iron nanoparticles.

View Article and Find Full Text PDF

Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.

View Article and Find Full Text PDF

Lung tissue from human patients and murine models of sickle cell disease pulmonary hypertension (SCD-PH) show perivascular regions with excessive iron accumulation. The iron accumulation arises from chronic hemolysis and extravasation of hemoglobin (Hb) into the lung adventitial spaces, where it is linked to nitric oxide depletion, oxidative stress, inflammation, and tissue hypoxia, which collectively drive SCD-PH. Here, we tested the hypothesis that intrapulmonary delivery of hemopexin (Hpx) to the deep lung is effective at scavenging heme-iron and attenuating the progression of SCD-PH.

View Article and Find Full Text PDF

Urotropine, an antibacterial agent to treat urinary tract bacterial infections, can be also considered as a repurposed drug with formaldehyde-mediated anticancer activity. Recently, we have synthesized urotropine surface modified iron oxide nanoparticles (URO@FeO NPs) with improved colloidal stability and limited cytotoxicity against human fibroblasts. In the present study, we have investigated URO@FeO NP-mediated responses in a panel of forty phenotypically different breast cancer cell lines along with three non-cancerous corresponding cell lines.

View Article and Find Full Text PDF

The necessity to mitigate the intrinsic issues associated with tissue or organ transplants, in order to address the rising prevalence of diseases attributable to increased life expectancy, provides a rationale for the pursuit of innovation in the field of biomaterials. Specifically, biopolymeric aerogels represent a significant advancement in the field of tissue engineering, offering a promising solution for the formation of temporary porous matrices that can replace damaged tissues. However, the functional characteristics of these materials are inadequate, necessitating the implementation of matrix reinforcement methods to enhance their performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!