Ocean acidification (OA) and the associated changes in seawater carbonate chemistry pose a threat to calcifying organisms. This is particularly serious for shelled molluscs, in which shell growth and microstructure has been shown to be highly sensitive to OA. To improve our understanding of the responses of abalone to OA, this study investigated the effects of CO-induced ocean acidification on extra-cellular acid-base parameters in the European abalone Haliotis tuberculata. Three-year-old adult abalone were exposed for 15 days to three different pH levels (7.9, 7.7, 7.4) representing current and predicted near-future conditions. Hæmolymph pH and total alkalinity were measured at different time points during exposure and used to calculate the carbonate parameters of the extracellular fluid. Total protein content was also measured to determine whether seawater acidification influences the composition and buffer capacity of hæmolymph. Extracellular pH was maintained at seawater pH 7.7 indicating that abalones are able to buffer moderate acidification (-0.2 pH units). This was not due to an accumulation of HCO ions but rather to a high hæmolymph protein concentration. By contrast, hæmolymph pH was significantly decreased after 5 days of exposure to pH 7.4, indicating that abalone do not compensate for higher decreases in seawater pH. Total alkalinity and dissolved inorganic carbon were also significantly decreased after 15 days of low pH exposure. It is concluded that changes in the acid-base balance of the hæmolymph might be involved in deleterious effects recorded in adult H. tuberculata facing severe OA stress. This would impact both the ecology and aquaculture of this commercially important species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpa.2021.110996 | DOI Listing |
Sci Rep
December 2024
British Antarctic Survey, High Cross, Madingley Road, Cambridge, UK.
Marine microplastic is pervasive, polluting the remotest ecosystems including the Southern Ocean. Since this region is already undergoing climatic changes, the additional stress of microplastic pollution on the ecosystem should not be considered in isolation. We identify potential hotspot areas of ecological impact from a spatial overlap analysis of multiple data sets to understand where marine biota are likely to interact with local microplastic emissions (from ship traffic and human populations associated with scientific research and tourism).
View Article and Find Full Text PDFMar Environ Res
December 2024
Shenzhen Key Laboratory of Marine Microbiome Engineering Institute for Advanced Study, Shenzhen University, Shenzhen, China. Electronic address:
The ongoing decline in seawater pH, driven by the absorption of excess atmospheric CO, represents a major environmental issue. This reduction in pH can interact with metal pollution, resulting in complex effects on marine phytoplankton. In this study, we examined the combined impacts of seawater acidification and copper (Cu) exposure on the marine diatom Phaeodactylum tricornutum.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
Instituto do Mar, Universidade Federal de São Paulo (IMar-Unifesp), Santos, SP, Brazil. Electronic address:
This study aimed to assess the interactive effects of CO-driven acidification, temperature rise, and PAHs toxicity on meiobenthic communities. Laboratory microcosms were established in a full factorial experimental design, manipulating temperature (25 °C and 27 °C), pH (8.1 and 7.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, Hong Kong, China.
Global changes can profoundly affect the sex determination and reproductive output of marine organisms, disrupting the population structure and ecosystems. High COdriven low pH in the context of ocean acidification (OA) has been shown to severely affect various calcifiers, but less is known about the extent to which low pH influences sex determination and reproduction of marine organisms, particularly mollusks. This study is the first to report a biased sex ratio over multiple generations toward females, driven by exposure to high CO-induced low pH environments, using the ecologically and economically important Portuguese oyster () as a model.
View Article and Find Full Text PDFISME J
December 2024
Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States.
As a result of human activity, Earth's atmosphere and climate are changing at an unprecedented pace. Models based on short-term experiments predict major changes will occur in marine phytoplankton communities in the future ocean, but rarely consider how evolution or interactions with other microbes may influence these changes. Here we experimentally evolved several phytoplankton in co-culture with a heterotrophic bacterium, Alteromonas sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!