Glioblastoma (GBM) is the most common and lethal brain tumor with high inflammation. GBM cells infiltrate microglia and macrophages and are surrounded by pro-inflammatory cytokines. Interleukin (IL)-1β, which is abundantly expressed in the tumor microenvironment, is involved in tumor progression. Intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 mediate cell-cell interactions, and these cell adhesion molecules (CAMs) can be regulated by cytokines in immune cells or cancer cells in the inflammatory tumor microenvironment. In this study, we found that ICAM-1 and VCAM-1 expression was induced when GBM cells were treated with IL-1β, and that adhesive interaction between monocytes and GBM cells increased accordingly. The levels of soluble CAMs (sICAM-1 and sVCAM-1) were also increased in the supernatants induced by IL-1β. Furthermore, the conditioned media contained sICAM-1 and sVCAM-1, which further promoted IL-6 and CCL2 expression in differentiated macrophages. IL-1β downregulated Src homology 1 domain-containing protein tyrosine phosphatase (SHP-1) in GBM. The expression of ICAM-1 and VCAM-1 was regulated by p38, AKT, and NF-κB signaling pathways, which were modulated by SHP-1 signaling. The present study suggests that IL-1β-induced protein expression of ICAM-1 and VCAM-1 in GBM may modulate the adhesive interaction between GBM and monocytes. In addition, IL-1β also induced the soluble form of ICAM-1 and VCAM-1 in GBM, which plays a key role in the regulation of tumor-associated monocyte/macrophage polarization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2021.174216DOI Listing

Publication Analysis

Top Keywords

icam-1 vcam-1
16
gbm cells
12
gbm
9
interaction gbm
8
tumor microenvironment
8
adhesion molecule
8
cell adhesion
8
adhesive interaction
8
sicam-1 svcam-1
8
expression icam-1
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!