Hepatic gluconeogenesis is the major contributor to the hyperglycemia observed in both patients and animals with type 2 diabetes. The transcription factor FOXO1 plays a dominant role in stimulating hepatic gluconeogenesis. FOXO1 is mainly regulated by insulin under physiological conditions, but liver-specific disruption of Foxo1 transcription restores normal gluconeogenesis in mice in which insulin signaling has been blocked, suggesting that additional regulatory mechanisms exist. Understanding the transcriptional regulation of Foxo1 may be conducive to the development of insulin-independent strategies for the control of hepatic gluconeogenesis. Here, we found that elevated plasma levels of adenine nucleotide in type 2 diabetes are the major regulators of Foxo1 transcription. We treated lean mice with 5'-AMP and examined their transcriptional profiles using RNA-seq. KEGG analysis revealed that the 5'-AMP treatment led to shifted profiles that were similar to db/db mice. Many of the upregulated genes were in pathways associated with the pathology of type 2 diabetes including Foxo1 signaling. As observed in diabetic db/db mice, lean mice treated with 5'-AMP displayed enhanced Foxo1 transcription, involving an increase in cellular adenosine levels and a decrease in the S-adenosylmethionine to S-adenosylhomocysteine ratio. This reduced methylation potential resulted in declining histone H3K9 methylation in the promoters of Foxo1, G6Pc, and Pepck. In mouse livers and cultured cells, 5'-AMP induced expression of more FOXO1 protein, which was found to be localized in the nucleus, where it could promote gluconeogenesis. Our results revealed that adenine nucleotide-driven Foxo1 transcription is crucial for excessive glucose production in type 2 diabetic mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8233149 | PMC |
http://dx.doi.org/10.1016/j.jbc.2021.100846 | DOI Listing |
Dev Dyn
January 2025
Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Background: The FOXOs regulate the transcription of many genes, including ones directly linked to pathways required for lens development. However, this transcription factor family has rarely been studied in the context of development, including the development of the lens. FOXO expression, regulation, and function during lens development remained unexplored.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:
Starch is widely used in aquaculture because of its low price and the advantages for processing expanded feed. Largemouth bass are naturally type 2 diabetic and intolerant to dietary carbohydrates. In this study, we found that the phosphorylation of AKT and FoxO1 were down-regulated in the fish suffering from metabolic liver disease (MLD).
View Article and Find Full Text PDFInt J Surg
December 2024
Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
Background: Growth hormone-secreting pituitary adenomas (GHPA) display diverse biological behaviors and clinical outcomes, necessitating the identification of tumor heterogeneity and prognostically relevant markers.
Methods: In this study, we performed single-cell RNA sequencing (scRNA-seq) on 10 GHPA samples, four of which also underwent spatial transcriptome sequencing, and used scRNA-seq data from four normal pituitary samples as controls. Cell subtype characterization in GHPA was analyzed using multiple algorithms to identify malignant bias regulators, which were then validated using a clinical cohort.
Cancer Med
January 2025
Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.
Background: The histologic classification of rhabdomyosarcoma (RMS) as alveolar (aRMS) or embryonal (eRMS) is of prognostic importance, with the aRMS being associated with a worse outcome. Specific gene fusions (PAX3/7::FOXO1) found in the majority of aRMS have been recognized as markers associated with poor prognosis and are included in current risk stratification instead of histologic subtypes in localized disease. In metastatic disease, the independent prognostic significance of fusion status has not been definitively established.
View Article and Find Full Text PDFBiomed Rep
March 2025
Department of Central Laboratory, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China.
Hepatocellular carcinoma (HCC) is characterized by a poor prognosis globally. PAX-interacting protein 1 (PAXIP1) serves a key role in the development of numerous human cancer types. Nevertheless, its specific involvement in HCC remains poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!