A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Omeprazole induces vascular remodeling by mechanisms involving xanthine oxidoreductase and matrix metalloproteinase activation. | LitMetric

Proton pump inhibitors (PPI) are commonly used drugs that may increase the cardiovascular risk by mechanisms not entirely known. We examined whether the PPI omeprazole promotes vascular oxidative stress mediated by xanthine oxidoreductase (XOR) leading to activation of matrix metalloproteinases (MMPs) and vascular remodeling. We studied Wistar rats treated with omeprazole (or vehicle) combined with the XOR inhibitor allopurinol (or vehicle) for four weeks. Systolic blood pressure (SBP) measured by tail-cuff plethysmography was not affected by treatments. Omeprazole treatment increased the aortic cross-sectional area and media/lumen ratio by 25% (P < 0.05). Omeprazole treatment decreased gastric pH and induced vascular remodeling accompanied by impaired endothelium-dependent aortic responses (assessed with isolated aortic ring preparation) to acetylcholine (P < 0.05). Omeprazole increased vascular active MMP-2 expression and activity assessed by gel zymography and in situ zymography, respectively (P < 0.05). Moreover, omeprazole enhanced vascular oxidative stress assessed in situ with the fluorescent dye DHE and with the lucigenin chemiluminescence assay (both P < 0.05). All these biochemical changes caused by omeprazole were associated with increased vascular XOR activity (but not XOR expression assessed by Western blot) and treatment with allopurinol fully prevented them (all P < 0.05). Importantly, treatment with allopurinol prevented the vascular dysfunction and remodeling caused by omeprazole. Our results suggest that the long-term use of omeprazole induces vascular dysfunction and remodeling by promoting XOR-derived reactive oxygen species formation and MMP activation. These findings provide evidence of a new mechanism that may underlie the unfavorable cardiovascular outcomes observed with PPI therapy. Clinical studies are warranted to validate our findings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2021.114633DOI Listing

Publication Analysis

Top Keywords

vascular remodeling
8
xanthine oxidoreductase
8
omeprazole
4
omeprazole induces
4
induces vascular
4
remodeling mechanisms
4
mechanisms involving
4
involving xanthine
4
oxidoreductase matrix
4
matrix metalloproteinase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!