Targeted wastewater surveillance of SARS-CoV-2 on a university campus for COVID-19 outbreak detection and mitigation.

Environ Res

Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA. Electronic address:

Published: September 2021

Targeted wastewater surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been proposed by the United States Centers for Disease Control and Prevention's National Wastewater Surveillance System as a complementary approach to clinical surveillance to detect the presence of Coronavirus Disease 2019 (COVID-19) at high-density facilities and institutions such as university campuses, nursing homes, and correctional facilities. In this study we evaluated the efficacy of targeted wastewater surveillance of SARS-CoV-2 RNA together with individual-level testing for outbreak mitigation on a university campus during Fall 2020 semester. Wastewater samples (n = 117) were collected weekly from manholes or sewer cleanouts that receive wastewater inputs from dormitories, community-use buildings, and a COVID-19 isolation dormitory. Quantitative RT-PCR N1 and N2 assays were used to measure SARS-CoV-2 nucleocapsid genes in wastewater. Due to varying human waste input in different buildings, pepper mild mottle virus (PMMV) RNA was also measured in all samples and used to normalize SARS-CoV-2 N1 and N2 RNA wastewater concentrations. In this study, temporal trends of SARS-CoV-2 in wastewater samples mirrored trends in COVID-19 cases detected on campus. Normalizing SARS-CoV-2 RNA concentrations using human fecal indicator, PMMV enhanced the correlation between N1 and N2 gene abundances in wastewater with COVID-19 cases. N1 and N2 genes were significant predictors of COVID-19 cases in dormitories, and the N2 gene was significantly correlated with the number of detected COVID-19 cases in dormitories. By implementing several public health surveillance programs include targeted wastewater surveillance, individual-level testing, contact tracing, and quarantine/isolation facilities, university health administrators could act decisively during an outbreak on campus, resulting in rapid decline of newly detected COVID-19 cases. Wastewater surveillance of SARS-CoV-2 is a proactive outbreak monitoring tool for university campuses seeking to continue higher education practices in person during the COVID-19 pandemic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8163699PMC
http://dx.doi.org/10.1016/j.envres.2021.111374DOI Listing

Publication Analysis

Top Keywords

wastewater surveillance
24
covid-19 cases
20
targeted wastewater
16
surveillance sars-cov-2
12
sars-cov-2 rna
12
wastewater
11
covid-19
9
surveillance
8
sars-cov-2
8
university campus
8

Similar Publications

infections pose significant public health challenges worldwide. The diversity of strains, particularly those isolated from environmental and clinical sources, necessitates innovative approaches to prevention and treatment. Previous research has shown that small extracellular vesicles (sEVs) produced by macrophages during Typhimurium infection can induce robust immune responses when used as a vaccine, offering complete protection in systemic infection models.

View Article and Find Full Text PDF

Residual heavy metals and antibiotic pollution in abandoned breeding areas along the northeast coast of Hainan Island, China.

Mar Pollut Bull

January 2025

Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China. Electronic address:

To assess the environmental status of an abandoned aquaculture and breeding area in the northeast coast of the Hainan Island, surface and well water, sediment and surface soils were sampled and analyzed for conventional physicochemical properties, heavy metals and antibiotics. Metagenome tests were also conducted to determine the composition and diversity of the microbial community in typical habitats. Affected by the discharge of wastewater from higher-place pond aquaculture, coastal freshwater rivers have undergone significant salinization, Cl and Na were as high as 4.

View Article and Find Full Text PDF

Lifting of travel restrictions brings additional noise in COVID-19 surveillance through wastewater-based epidemiology in post-pandemic period.

Water Res

January 2025

Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia. Electronic address:

The post-pandemic world still faces ongoing COVID-19 infections, although international travel has returned to pre-pandemic conditions. Wastewater-based epidemiology (WBE) is considered an efficient tool for the population-wide surveillance of COVID-19 infections during the pandemic. However, the performance of WBE in post-pandemic era with travel restrictions lifted remains unknown.

View Article and Find Full Text PDF

Antimicrobial resistant Enterobacterales of clinical importance in mute swans.

Sci Total Environ

January 2025

Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Ireland; Centre for One Health, University of Galway, Ireland.

Urban water environments, including canals, harbours and estuaries are susceptible to contamination with antimicrobials and drug-resistant bacteria through domestic and industrial wastewater discharges and storm water overflows. There is potential for wildlife using these waters to acquire and transmit drug-resistant bacteria and antimicrobial resistance genes (ARGs) of clinical importance. This study aimed to assess clinically important drug-resistant bacteria in urban waterfowl, particularly mute swans.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) is a global health challenge, with hospitals and wastewater treatment plants (WWTPs) serving as significant pathways for the dissemination of antibiotic resistance genes (ARGs). This study investigates the potential of wastewater-based epidemiology (WBE) as an early warning system for assessing the burden of AMR at the population level. In this comprehensive year-long study, effluent was collected weekly from three large hospitals, and treated and untreated wastewater were collected monthly from three associated community WWTPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!