Phosphorus-based self-immolative (SI) linkers offer a wide range of applications, such as smart materials and drug-delivery systems. Phosphorus SI linkers are ideal candidates for double-cargo delivery platforms because they have a higher valency than carbon. A series of substituted phosphate linkers was designed for releasing two phenolic cargos through SI followed by chemical hydrolysis. Suitable modifications of the lactate spacer increased the cargo release rate significantly, from 1 day to 2 hours or 5 minutes, as shown for linkers containing p-fluoro phenol. In turn, double cargo linkers bearing p-methyl phenol released their cargo more slowly (4 days, 4 hours, and 15 minutes) than their p-fluoro analogues. The α-hydroxyisobutyrate linker released both cargos in 25 minutes. Our study expands the current portfolio of SI constructs by providing a double cargo delivery option, which is crucial to develop universal SI platforms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202101805 | DOI Listing |
ACS Nano
January 2025
Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
Microrobots are poised to transform biomedicine by enabling precise, noninvasive procedures. However, current magnetic microrobots, composed of solid monolithic particles, present fundamental challenges in engineering intersubunit interactions, limiting their collective effectiveness in navigating irregular biological terrains and confined spaces. To address this, we design hierarchically assembled microrobots with multiaxis mobility and collective adaptability by engineering the potential magnetic interaction energy between subunits to create stable, self-reconfigurable structures capable of carrying and protecting cargo internally.
View Article and Find Full Text PDFInt J Pharm
January 2025
Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark. Electronic address:
Oligonucleotides represent a class of molecules that exhibit remarkable therapeutic potential due to their unparalleled target specificity, yet they suffer from limited cellular uptake and lack of tissue selectivity. Extensive research is conducted with cell-penetrating peptides (CPPs) as delivery excipients due to their ability to translocate across cellular membranes and deliver cargo into cells. This study aims to investigate an innovative approach to rapidly, and with small amounts of compound, analyze and compare complexation of CPPs to oligonucleotides.
View Article and Find Full Text PDFJ Alzheimers Dis
January 2025
Multimodal Imaging of Neurodegenerative Disease (MIND) Unit, National Institute of Aging, Intramural Research Program, Baltimore, MD, USA.
Background: High-density lipoprotein (HDL) modulates the blood-brain barrier and cerebrovascular integrity, likely influencing the risk of Alzheimer's disease (AD), neurodegeneration, and cognitive decline.
Objective: This study aims to identify HDL protein cargo associated with brain amyloid deposition and brain volume in regions vulnerable to AD pathology in older adults.
Methods: HDL was separated from the plasma of 65 non-demented participants of the Atherosclerosis Risk in Communities (ARIC) study using a fast protein liquid chromatography method.
Autophagy
January 2025
Department of Cell and Molecular Biology, Virtua Health College of Medicine and Life Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA.
Macroautophagy is a catabolic process that maintains cellular homeostasis by recycling intracellular material through the use of double-membrane vesicles called autophagosomes. In turn, autophagosomes fuse with vacuoles (in yeast and plants) or lysosomes (in metazoans), where resident hydrolases degrade the cargo. Given the conservation of autophagy, is a valuable model organism for deciphering molecular details that define macroautophagy pathways.
View Article and Find Full Text PDFJ Cell Biol
February 2025
Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
Canonical autophagy captures within specialized double-membrane organelles, termed autophagosomes, an array of cytoplasmic components destined for lysosomal degradation. An autophagosome is completed when the growing phagophore undergoes ESCRT-dependent membrane closure, a prerequisite for its subsequent fusion with endolysosomal organelles and degradation of the sequestered cargo. ATG9A, a key integral membrane protein of the autophagy pathway, is best known for its role in the formation and expansion of phagophores.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!