Small aromatic molecules are precursors for several biological systems such as DNA, proteins, drugs, and are also present in several pollutants. The understanding of the interaction of these small aromatic molecules with pristine and functionalised graphene (fGr) can generate different applications. We performed ab initio simulations based on the density functional theory to evaluate the interaction between the aromatic compounds, benzene, benzoic acid, aniline and phenol, with pristine and fGr. The results show that the binding energy for all cases is less than 103.24 kJ/mol (1.07 eV) without substantial modification of the electronic properties, indicating that the interaction occurs through a physical adsorption regime. The results are promising because they suggest that pristine graphene and functionalised graphene are suitable for removing these pollutants, or for carrying molecules for biological applications influenced by π-π and H-bonds interaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-021-04806-0 | DOI Listing |
Chem Sci
January 2025
Institute of Chemistry, Academia Sinica 128 Academia Road, Section 2, Nankang Taipei 115201 Taiwan
Nanographenes and polycyclic aromatic hydrocarbons exhibit many intriguing physical properties and have potential applications across a range of scientific fields, including electronics, catalysis, and biomedicine. To accelerate the development of such applications, efficient and reliable methods for accessing functionalized analogs are required. Herein, we report the efficient synthesis of functionalized small nanographenes from readily available iodobiaryl and diarylacetylene derivatives a one-pot, multi-annulation sequence catalyzed by a single palladium catalyst.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Chemistry, Anhui University, Hefei 230601, P. R. China.
Despite being studied for almost two centuries, aromaticity has always been a controversial concept. We previously proposed a unified aromatic rule for π-conjugated systems by two-dimensional (2D) superatomic-molecule theory, where benzenoid rings are treated as period 2 2D superatoms (3π-N, 4π-O, 5π-F, 6π-Ne) and, further, bond to form 2D superatomic molecules. Herein, to build a 2D periodic table, we further extend the theory to period 3 (7π-P, 8π-S, 9π-Cl, 10π-Ar) and period 1 (1π-H, 2π-He) elements.
View Article and Find Full Text PDFSmall
January 2025
Department of Physics, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
In this study, we investigate how modulating organic spacers in perovskites influences their X-ray detection performance and reveal the mechanism of low-dose detection with high sensitivity using femtosecond-transient absorption spectroscopy (fs-TAS). Particularly, we employ N,N,N',N'-tetramethyl-1,4-phenylenediammonium (TMPDA) and N,N-dimethylphenylene-p-diammonium (DPDA) as organic spacers to synthesize 2D perovskite single crystals (SCs). We find that DPDA-based SCs exhibit reduced interplanar spacing between inorganic layers, leading to increased lattice packing.
View Article and Find Full Text PDFSci Total Environ
January 2025
China National Environmental Monitoring Centre, Beijing 100012, China.
The riverine dissolved organic matter (DOM) pool constitutes the largest and most dynamic organic carbon reservoir within inland aquatic systems. Human activities significantly alter the distribution of organic matter (OM) in rivers, thereby affecting the availability of DOM. However, the impact of total suspended solids (TSS) on DOM under anthropogenic influence remains insufficiently elucidated.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.
Tryptophan participates in important life activities and is involved in various metabolic processes. The indole and aromatic binuclear ring structure in tryptophan can engage in diverse interactions, including π-π, π-alkyl, hydrogen bonding, cation-π, and CH-π interactions with other side chains and protein targets. These interactions offer extensive opportunities for drug development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!