Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fast Photochemical Oxidation of proteins (FPOP) coupled with mass spectrometry (MS) has become an invaluable tool in structural proteomics to interrogate protein interactions, structure, and protein conformational dynamics as a function of solvent accessibility. In recent years, the scope of FPOP, a hydroxyl radical protein foot printing (HRPF) technique, has been expanded to protein labeling in live cell cultures, providing the means to study protein interactions in the convoluted cellular environment. In-cell protein modifications can provide insight into ligand induced structural changes or conformational changes accompanying protein complex formation, all within the cellular context. Protein footprinting has been accomplished employing a customary flow-based system and a 248 nm KrF excimer laser to yield hydroxyl radicals via photolysis of hydrogen peroxide, requiring 20 minutes of analysis for one cell sample.To facilitate time-resolved FPOP experiments, the use of a new 6-well plate-based IC-FPOP platform was pioneered. In the current system, a single laser pulse irradiates one entire well, which truncates the FPOP experimental time frame resulting in 20 seconds of analysis time, a 60-fold decrease. This greatly reduced analysis time makes it possible to research cellular mechanisms such as biochemical signaling cascades, protein folding, and differential experiments (i.e., drug-free vs. drug bound) in a time-dependent manner. This new instrumentation, entitled Platform Incubator with Movable XY Stage (PIXY), allows the user to perform cell culture and IC-FPOP directly on the optical bench using a platform incubator with temperature, CO2 and humidity control. The platform also includes a positioning stage, peristaltic pumps, and mirror optics for laser beam guidance. IC-FPOP conditions such as optics configuration, flow rates, transient transfections, and H2O2 concentration in PIXY have been optimized and peer-reviewed. Automation of all components of the system will reduce human manipulation and increase throughput.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9196142 | PMC |
http://dx.doi.org/10.3791/62153 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!