Ischaemic stroke is a leading cause of death and disability. One of the major pathogenic mechanisms after ischaemia includes the switch to the glycolytic pathway, leading to tissue acidification. Carbonic anhydrase (CA) contributes to pH regulation. A new generation of CA inhibitors, AN11-740 and AN6-277 and the reference compound acetazolamide (ACTZ) were investigated in two models of brain ischaemia: in rat hippocampal acute slices exposed to severe oxygen, glucose deprivation (OGD) and in an model of focal cerebral ischaemia induced by permanent occlusion of the middle cerebral artery (pMCAo) in the rat. , the application of selective CAIs significantly delayed the appearance of anoxic depolarisation induced by OGD. , sub-chronic systemic treatment with AN11-740 and ACTZ significantly reduced the neurological deficit and decreased the infarct volume after pMCAo. CAIs counteracted neuronal loss, reduced microglia activation and partially counteracted astrocytes degeneration inducing protection from functional and tissue damage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8168743 | PMC |
http://dx.doi.org/10.1080/14756366.2021.1907575 | DOI Listing |
FEBS J
January 2025
'The Protein Factory 2.0', Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy.
The sequestration of carbon dioxide using carbonic anhydrase (CA) is one of the most effective methods for mitigating global warming. The burning of fossil fuels releases large quantities of flue gas; because of its high temperature and of the alkaline conditions required for CaCO precipitation in the mineralization process, thermo-alkali-stable CAs are needed. In this context, Manyumwa et al.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Medicinal Chemistry Center, Togliatti State University, Togliatti, 445020, Russia.
Human carbonic anhydrase IX (CAIX) plays a key role in maintaining pH homeostasis of malignant neoplasms, thus creating a favorable microenvironment for the growth, invasion, and metastasis of tumor cells. Recent studies have established that inhibition of CAIX expressed on the surface of tumor cells significantly increases the efficacy of classical chemotherapeutic agents and makes it possible to suppress the resistance of tumor cells to chemotherapy, as well as to increase their sensitivity to drugs (in particular, to reduce the required dose of cytostatic agents). In this work, we studied the ability of new CAIX inhibitors based on substituted 1,2,4-oxadiazole-containing primary aromatic sulfonamides, to potentiate the cytostatic effect of gefitinib (selective inhibitor of epidermal growth factor receptor tyrosine kinase domain) under hypoxic conditions.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Viale delle idee 30, 50019 Sesto Fiorentino, Florence, Italy.
Global changes and growing demands have led to the development of new molecular approaches to improve crop physiological performances. Carbonic anhydrase (CA) enzymes, ubiquitous across various life kingdoms, stand out for their critical roles in plant photosynthesis and water relations. We hypothesize that the modulators of human CAs could affect plant physiology.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Valley University, New Valley 72511, Egypt.
The present study aims to create spiro-N-(4-sulfamoyl-phenyl)-1,3,4-thiadiazole-2-carboxamide derivatives with anticancer activities. The in vitro anticancer evaluation showed that only the novel spiro-acenaphthylene tethered-[1,3,4]-thiadiazole (compound ) exhibited significant anticancer efficacy as a selective inhibitor of tumor-associated isoforms of carbonic anhydrase. Compound demonstrated considerable efficacy against the renal RXF393, colon HT29, and melanoma LOX IMVI cancer cell lines, with IC values of 7.
View Article and Find Full Text PDFBioorg Chem
January 2025
Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia. Electronic address:
Multi-drug-resistant (MDR) pathogens represent a critical global health threat, necessitating the development of novel antimicrobial agents with broad-spectrum activity and minimal toxicity. This study investigates the antimicrobial and anti-biofilm properties of 4-Allyl-2-methoxyphenol (eugenol, EU) and (E)-3-Phenylprop-2-enal (cinnamaldehyde, CN) against 19 clinically significant pathogens through a combination of in-vitro assays and in-silico analyses. EU displayed remarkable activity, particularly against Aspergillus niger (20.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!