Contradictory to the first intuitive impression that forging putatively flat aromatic rings evades stereoisomerism, a striking variety of atropisomeric compounds are conceivable by the formation of arenes, offering captivating avenues for catalyst-controlled stereoselective strategies. Since the assembled atropisomeric products that contain one or several rotationally restricted single bonds are characterized by especially well defined molecular architectures, they are distinctly suitable for numerous pertinent applications. In view of the fascinating arene-forming aldol condensation pathways taking place in polyketide biosynthesis (cyclases/aromatases (CYC/ARO)), the versatile small-molecule-catalyzed aldol reaction appeared as an exceptionally appealing synthetic means to prepare various unexplored atropisomeric compounds in our efforts presented herein. In our initial studies, the use of secondary amine organocatalysts provided excellent selectivities in stereoselective arene-forming aldol condensations for a broad range of atropisomeric products, such as biaryls and rotationally restricted aromatic amides. In further analogy to polyketide biosynthesis, it was also conceivable that several aromatic rings are formed in catalytic cascade reactions. The use of small-molecule catalysts thereby enabled us to transfer this concept to the conversion of unnatural and noncanonical polyketide substrates, thus giving access to atropisomers with particular value for synthetic applications. The versatility of the stereoselective aldol reactions with numerous catalytic activation modes further provided a strategy to individually control several stereogenic axes, similar to the various methodologies developed for controlling stereocenter configurations. By the use of iterative building block additions combined with catalyst-controlled aldol reactions to form the aromatic rings, stereodivergent pathways for catalyst-substrate-matched and -mismatched products were obtained. Besides secondary amines, cinchona-alkaloid-based quaternary ammonium salts also proved to be highly efficient in overcoming severe substrate bias. The obtained atropisomeric multiaxis systems, with all of the biaryl bonds suitably restricted in rotation even at high temperatures, are spatially distinctly defined. The helical secondary structure is therefore excellently suited for several captivating applications.While previous catalyst-controlled stereoselective methods distinguish two stereoisomers for each stereogenic unit, catalyst control beyond the realms of this dualistic stereoisomerism remained unexplored. By the selective preparation of O̅ki atropisomers characterized by their sixfold stereogenicity in Rh-catalyzed [2 + 2 + 2] cyclotrimerizations, one out of the six possible stereoisomers resulting from the restricted rotation of a single bond was shown to be catalytically addressable. Catalyst control over higher-order stereogenicity therefore further interconnects conformational analysis and stereoselective catalysis and offers captivating avenues to explore uncharted stereochemical space for creating a broad range of unprecedented molecular motifs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.accounts.1c00178 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Sichuan University - Wangjiang Campus: Sichuan University, Chemistry, 29 Wangjiang Rd, 610064, Chengdu, CHINA.
Poly(lactic-co-glycolic acid) (PLGA) has been widely employed for various biomedical applications owing to its biodegradability and biocompatibility. The discovery of the stereocomplex formation between enantiomeric alternating PLGA pairs underscored its potential as high-performance biodegradable materials with diverse material properties and biodegradability. Herein, we have established a regio- and stereoselective ring-opening polymerization approach for the synthesis of stereocomplexed isoenriched alternating PLGA from racemic methyl-glycolide (rac-MG).
View Article and Find Full Text PDFChem Mater
January 2025
Department of Chemistry and Nanoscience Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark.
Bismuth ferrites, specifically perovskite-type BiFeO and mullite-type BiFeO, hold significant technological promise as catalysts, photovoltaics, and room-temperature multiferroics. However, challenges arise due to their frequent cocrystallization, particularly in the nanoregime, hindering the production of phase-pure materials. This study unveils a controlled sol-gel crystallization approach, elucidating the phase formation complexities in the bismuth ferrite oxide system by coupling thermochemical analysis and total scattering with pair distribution function analysis.
View Article and Find Full Text PDFChem Sci
January 2025
Leibniz-Institut für Katalyse e.V. Albert-Einstein-Str. 29a D-18059 Rostock Germany
Although supported Mo-containing catalysts have been extensively investigated in the metathesis of ethylene with 2-butene to propene, the mechanisms of the formation and transformation of catalytically active Mo-carbenes in the course of the reaction are still not fully understood. The difficulties arise because only a tiny fraction of MoO species can form Mo-carbenes , making the detection of the latter by spectroscopic means very unlikely. Herein, purposefully designed steady-state and transient experiments including their kinetic evaluation and density functional theory calculations enabled us to elucidate mechanistic and kinetic details of the above reaction-induced processes in the metathesis reaction over a Mo/P/SiO catalyst at 50 °C.
View Article and Find Full Text PDFACS Omega
January 2025
State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Selective catalytic reduction of nitrogen oxides (NO ) by ammonia (NH-SCR) over supported vanadium catalysts is a commercial technology for NO abatement in combustion exhaust. The addition of tungsten oxide (WO) significantly enhances the performance of supported vanadium catalysts (VO/TiO), but the mechanism underlying this enhancement remains controversial. In this study, we employed combined operando spectroscopy (DRIFTS-UV-vis-MS) to investigate the dynamic state of active sites (acid sites and redox sites) on VO-WO/TiO during the NH-SCR reaction.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Arba Minch University, P.O. Box No. 21, Arba Minch 21, Ethiopia.
The present work focuses on a newly synthesized pyrazolo[3,4-]pyridine prepared by formal [3 + 3] cycloaddition using copper(II) acetylacetonate as the catalyst; efficient and effective mild reactions with high yields were obtained using this method. The synthesized compounds were identified by FT-IR, H and C NMR, and mass spectra (/) analyses. The compounds () were screened for several in vitro and in silico activities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!