Determination of inactivation kinetics, associated with thermal processing of foods and obtained from dynamic temperature experiments, requires carefully designed experiments, the primary element being the selection of the appropriate temperature profile along with a carefully planned sampling schedule. In the present work, a number of different dynamic temperature profiles were investigated in terms of their ability to generate accurate kinetic parameters with low confidence intervals (CIs). Although alternative models have been also tested, our work was concentrated on thermal inactivation kinetics that could be described by the classical D-z values. A pair of D and z values was assumed, and for each temperature profile tested, concentration data at different processing times were generated through the appropriate models. Next, an error (up to ±2.5% or ±5%) was introduced on these theoretical values to generate pseudo-experimental data, and the back-calculation of the assumed kinetic parameters by non-linear regression was performed. The accuracy and the 95% CIs of the estimated kinetic parameters were evaluated; joint confidence regions were also constructed to investigate parameters correlation. The effect of temperature profile pattern, level of error, number of experimental points, and reference temperature was assessed. A stepwise increasing and a single triangle-pattern temperature profile were the best profiles among those tested. As a general observation, based on different kinetic models investigated, temperature profiles and sampling intervals that result in concentration versus time diagrams having shapes as suggested by the primary model used when isothermally applied are not considered appropriate for parameter estimation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1750-3841.15770 | DOI Listing |
Electromagn Biol Med
January 2025
Department of Mathematics, University of Gour Banga, Malda, India.
In cardiovascular research, electromagnetic fields generated by Riga plates are utilized to study or manipulate blood flow dynamics, which is particularly crucial in developing treatments for conditions such as arterial plaque deposition and understanding blood behavior under varied flow conditions. This research predicts the flow patterns of blood enhanced with gold and maghemite nanoparticles (gold-maghemite/blood) in an electromagnetic microchannel influenced by Riga plates with a temperature gradient that decays exponentially, under sudden changes in pressure gradient. The flow modeling includes key physical influences like radiation heat emission and Darcy drag forces in porous media, with the flow mathematically represented through unsteady partial differential equations solved using the Laplace transform (LT) method.
View Article and Find Full Text PDFChem Sci
January 2025
Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
The pharmaceutical industry cares about reducing toxic side effects of drugs in oral formulation. The best solution is to reduce the drug dose. To do so, drugs are required to have high aqueous solubility to ensure good bioavailability.
View Article and Find Full Text PDFWe theoretically calculate the coupling loss between single-mode fibers (SMFs) and polymer optical waveguides with different refractive index profiles. Temperature resistance is one of the concerns when integrating polymer optical waveguides near the electronics and photonics chips where they are highly likely to dissipate heat. Hence, the calculation focuses on the core size variations due to changes in operating temperature.
View Article and Find Full Text PDFN Biotechnol
January 2025
Department for Molecular Microbiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands; Department of Bioengineering, Imperial College London, South Kensington Campus, SSW7 2AZ, London, UK. Electronic address:
Fungal pathogens pose a threat to human health and food security. Few antifungals are available and resistance to all has been reported. Novel strategies to control plant and human pathogens as well as food spoilers are urgently required.
View Article and Find Full Text PDFJ Tissue Viability
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1414614411, Iran. Electronic address:
Scientists investigated probiotic-containing dressings to address the challenges associated with burn injuries, namely infection and antimicrobial resistance. The present investigation sought to evaluate the impact of innovative probiotic-loaded microparticles with in situ gelling characteristics on infected burns. The strain, Lactiplantibacillus plantarum, was selected due to its demonstrated wound-healing potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!