Over the last few years, a growing interest has surfaced about the possibility of enhancing solar harvester efficiency by coupling photovoltaic (PV) cells with thermoelectric generators (TEGs). To be effective solutions, hybrid thermoelectric-photovoltaic (HTEPV) solar harvesters must not only increase the solar conversion efficiency but should also be economically competitive. The aim of this paper is to estimate the profitability of HTEPV solar harvesters with no reference to specific materials, relating it instead to their physical properties only and thus providing a tool to address research effort toward classes of HTEPV systems able to compete with current PV technologies. An economic convenience index is defined and used to assess the economic sustainability of hybridization. It is found that, although hybridization often leads to enhanced solar power conversion, power costs (USD/W) may not always justify HTEPV deployment at the current stage of technology. An analysis of the cost structure shows that profitability requires largely enhanced thermoelectric stages, concentrated solar cells, or PV materials with favorable temperature efficiency coefficients, such as perovskite solar cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159161 | PMC |
http://dx.doi.org/10.1021/acsaem.1c00394 | DOI Listing |
Science
January 2025
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.
Emerging wearable devices would benefit from integrating ductile photovoltaic light-harvesting power sources. In this work, we report a small-molecule acceptor (SMA), also known as a non-fullerene acceptor (NFA), designed for stretchable organic solar cell (-OSC) blends with large mechanical compliance and performance. Blends of the organosilane-functionalized SMA BTP-Si4 with the polymer donor PNTB6-Cl achieved a power conversion efficiency (PCE) of >16% and ultimate strain (ε) of >95%.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China. Electronic address:
Thermochromic smart windows have been widely developed for building energy saving. However, most smart windows suffer from limited energy-saving performance, fixed phase transition temperature, and are not suitable for the temperature regulation needs of different application scenarios. Herein, a unique self-adaptive thermochromic hydrogel (HBPEC-PNA) with self-moisture-absorbing performance is reported that assembles solar energy cooling and evaporative heat dissipation.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Guangdong-Hong Kong Joint Laboratory for Carbon Neutrality, Jiangmen Laboratory of Carbon Science and Technology, Jiangmen, Guangdong, 529199, P. R. China.
Giant dimeric acceptors (GDAs), a sub-type of acceptor materials for organic solar cells (OSCs), have garnered much attention due to the synergistic advantages of their monomeric and polymeric acceptors, forming a well-defined molecular structure with a giant molecular weight for high efficiency and stability. In this study, for the first time, two new GDAs, DYF-V and DY2F-V are designed and synthesized for OSC operation, by connecting one vinylene linker with the mono-/di-fluorinated end group on two Y-series monomers, respectively. After fluorination, both DYF-V and DY2F-V exhibit bathochromic absorption and denser packing modes due to the stronger intramolecular charge transfer effect and torsion-free backbones.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur 741246 Kolkata India
Developing a self-sensitized catalyst from earth-abundant elements, capable of efficient light harvesting and electron transfer, is crucial for enhancing the efficacy of CO transformation, a critical step in environmental cleanup and advancing clean energy prospects. Traditional approaches relying on external photosensitizers, comprising 4d/5d metal complexes, involve intermolecular electron transfer, and attachment of photosensitizing arms to the catalyst necessitates intramolecular electron transfer, underscoring the need for a more integrated solution. We report a new Cu(ii) complex, K[CuNDPA] (1[K(18-crown-6)]), bearing a dipyrrin amide-based trianionic tetradentate ligand, NDPA (HL), which is capable of harnessing light energy, despite having a paramagnetic Cu(ii) centre, without any external photosensitizer and photocatalytically reducing CO to CO in acetonitrile : water (19 : 1 v/v) with a TON as high as 1132, a TOF of 566 h and a selectivity of 99%.
View Article and Find Full Text PDFChemistry
January 2025
Yanshan University, Physics, Hebeidajie,438, 066004, Qinhuangdao, CHINA.
Identifying two-dimensional (2D) high-efficiency solar photovoltaic devices remains an urgent challenge in addressing current energy demands. Considering the limits of isolated 2D systems in photovoltaics, one most effective solution is stacking them into van der Waals heterostructures (vdWHs). However, the favorable factors for photovoltaics in vdWHs is still uncertain, nor the intrinsic principles is clear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!