Enhancement of the Silicon Solar Cell Efficiency by Spin-Coated Polythiophene Films Embedded with Gold or Palladium Nanoparticles on the Rear Contact.

ACS Omega

Electronics and Communications Engineering Department, Arab Academy for Science, Technology & Maritime Transport, (AASTMT), P.O. Box: 1029, Abu-Qir, Alexandria 21937, Egypt.

Published: May 2021

In this article, we investigate the application of polythiophene (PT), polythiophene with embedded gold nanoparticles (PT-Au), and polythiophene with embedded palladium nanoparticles (PT-Pd) via the spin coating technique on the rear contact of single-crystalline silicon solar cells. Several layers of coating (up to four layers) were applied, followed by a simple heat treatment at 70 °C for 30 min. The morphology, particles distribution in the polymer, and crystal structure of the colloid PT, PT-Au, and PT-Pd were characterized by transmission electron microscopy (TEM). Optical characteristics of the polymer and nanoparticles embedded in the polymers exhibited high absorption in the near-UV region, and a plasmonic peak at around 580 nm is observed. The calculated energy gap ranged from 2.65 eV (PT-Pd 5%) to 2.9 eV (PT) and 3.05 eV (PT-Au 5%). Scanning electron microscopy (SEM) images of the successive layers show an increase in the density and thickness of the PT particles with increasing number of coating layers, up to 12 μm for four layers of PT. Devices were characterized under dark conditions exhibiting variations in the ideality factor and series and shunt resistances with different coating layers. The silicon solar cells were characterized by measuring quantum efficiency, photoconversion efficiency (PCE), fill factor, and series and shunt resistances before and after coating. The coating was found to reduce the series resistance and to increase the efficiency of the cell by up to 7.25% for the PT-Au5% layers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8158840PMC
http://dx.doi.org/10.1021/acsomega.1c00761DOI Listing

Publication Analysis

Top Keywords

silicon solar
12
coating layers
12
embedded gold
8
palladium nanoparticles
8
rear contact
8
polythiophene embedded
8
solar cells
8
electron microscopy
8
factor series
8
series shunt
8

Similar Publications

Installing photovoltaic systems (PVs) on building rooftops is a viable and sustainable alternative to meet the growing demand for electricity in cities. This work develops a methodology that uses LiDAR (laser imaging detection and ranging) technology and roof footprints to obtain a three-dimensional representation of the rooftops in the urban centre of Santa Isabel (Azuay, Ecuador). This allowed the determination of characteristics such as area, slope, orientation, and received solar radiation, making it possible to calculate the rooftop's theoretical, technical, and economic photovoltaic potential.

View Article and Find Full Text PDF

The tunability of the energy bandgap in the near-infrared (NIR) range uniquely positions colloidal lead sulfide (PbS) quantum dots (QDs) as a versatile material to enhance the performance of existing perovskite and silicon solar cells in tandem architectures. The desired narrow bandgap (NBG) PbS QDs exhibit polar (111) and nonpolar (100) terminal facets, making effective surface passivation through ligand engineering highly challenging. Despite recent breakthroughs in surface ligand engineering, NBG PbS QDs suffer from uncontrolled agglomeration in solid films, leading to increased energy disorder and trap formation.

View Article and Find Full Text PDF

Comparative Study of Iminodibenzyl and Diphenylamine Derivatives as Hole Transport Materials in Inverted Perovskite Solar Cells.

Chemistry

January 2025

Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg, Department of Materials Science and Engineering, Institute of Materials for Electronics and Energy Technology (i-MEET), Martensstraße 7, 91058, Erlangen, GERMANY.

Perovskite solar cells (PSCs) have recently achieved over 26% power conversion efficiency, challenging the dominance of silicon-based alternatives. This progress is significantly driven by innovations in hole transport materials (HTMs), which notably influence the efficiency and stability of PSCs. However, conventional organic HTMs like PTAA, although highly efficient, suffer from thermal degradation, moisture ingress, and high cost.

View Article and Find Full Text PDF

A low-temperature ionic liquid system for topochemical synthesis of Si nanospheres for high-performance lithium-ion batteries.

Dalton Trans

January 2025

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.

Silicon is utilized as a functional material in various fields such as semiconductors, bio-medicine, and solar energy. To prepare Si materials, researchers have proposed methods including carbothermal reduction, hydrothermal reduction, and magnesiothermal reduction, but these strategies often involve high temperatures or unwanted by-products. Herein, we present a low-temperature ionic liquid reduction system to prepare Si nanospheres based on 1-butyl-3-methylimidazolium chloride-aluminum chloride ([Bmim]Cl-AlCl).

View Article and Find Full Text PDF

Electroplating sludge (ES) is a hazardous waste, because it contains heavy metals. It poses severe environmental and health risk if not properly disposed. This study proposed a combined pyro-metallurgical process to separate and recover copper, nickel, chromium and iron from it.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!