A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Alternative Causal Link between Peptide Fibrillization and β-Strand Conformation. | LitMetric

Alternative Causal Link between Peptide Fibrillization and β-Strand Conformation.

ACS Omega

Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.

Published: May 2021

In the prevailing phenomenon of peptide fibrillization, β-strand conformation has long been believed to be an important structural basis for peptide assembly. According to a widely accepted theory, in most peptide fibrillization processes, peptide monomers need to intrinsically take or transform to β-strand conformation before they can undergo ordered packing to form nanofibers. In this study, we reported our findings on an alternative peptide fibrillization pathway starting from a disordered secondary structure, which could then transform to β-strand after fibrillization. By using circular dichroism, thioflavin-T binding test, and transmission electron microscopy, we studied the secondary structure and assembly behavior of Ac-RADARADARADARADA-NH (RADA16-I) in a low concentration range. The effects of peptide concentration, solvent polarity, pH, and temperature were investigated in detail. Our results showed that at very low concentrations, even though the peptide was in a disordered secondary structure, it could still form nanofibers through intermolecular assembly, and under higher peptide concentrations, the transformation from the disordered structure to β-strand could happen with the growth of nanofibers. Our results indicated that even without ordered β-strand conformation, driving forces such as hydrophobic interaction and electrostatic interaction could still play a determinative role in the self-assembly of peptides. At least in some cases, the formation of β-strand might be the consequence rather than the cause of peptide fibrillization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8154227PMC
http://dx.doi.org/10.1021/acsomega.1c01423DOI Listing

Publication Analysis

Top Keywords

peptide fibrillization
20
β-strand conformation
16
secondary structure
12
peptide
10
fibrillization β-strand
8
transform β-strand
8
form nanofibers
8
disordered secondary
8
β-strand
7
fibrillization
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!