Pseudorotaxane complexes between β-CD and mPEG derivatives bearing a carboxylic acid function (mPEG-COOH) were synthesized and investigated for their dispersing properties in a cement-based mortar. The formation of mPEG-COOH derivatives and their pseudorotaxanes was investigated by 1D nuclear magnetic resonance, diffusion ordered spectroscopy, and thermogravimetric analysis experiments. Mortar tests clearly indicate that mPEG-COOH@β-CD-interpenetrated supramolecules show excellent dispersing abilities. In addition, the supramolecular complexes show a retarding effect, analogously to other known β-CD-based superplasticizers in which the β-CD is covalently grafted on a polymeric backbone.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8154154 | PMC |
http://dx.doi.org/10.1021/acsomega.1c01133 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Henan University, Colleg of Chemistry and Molecular Sciences, Jingmin, 475004, Kaifeng, CHINA.
Cycloparaphenylenes (CPPs) represent a significant challenge for the synthesis of mechanically interlocked architectures, because they lack heteroatoms, which precludes traditional active and passive template methods. To circumvent this problem and explore the fundamental and functional properties of CPP rotaxanes and catenanes, researches have resorted to unusual non-covalent and even to labor-intensive covalent template approaches. Herein, we report a ring-in-ring non-covalent template strategy that makes use of the surprisingly strong non-covalent inclusion of crown ethers into suitably sized CPPs.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.
Macrocycles represent one important class of functional molecules, and dynamic macrocycles with the potential of cleavability, adaptability, and topological conversion are challenging. Herein we report photoswitchable allosteric and topological control of dynamic covalent macrocycles and further the use in guest binding and mechanically interlocked molecules. The manipulation of competing ring-chain equilibria and bond formation/scission within reaction systems enabled light-induced structural regulation over dithioacetal and thioacetal dynamic bonds, accordingly realizing bidirectional switching between crown ether-like covalent macrocycles and their linear counterparts.
View Article and Find Full Text PDFChem Sci
December 2024
Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín Vavrečkova 5669 760 01 Zlín Czech Republic
Rotaxanes can be regarded as storage systems for their wheel components, which broadens their application potential as a complement to the supramolecular systems that retain a mechanically interlocked structure. However, utilising rotaxanes in this way requires a method to release the wheel while preserving the integrity of all molecular constituents. Herein, we present simple rotaxanes based on cucurbit[6]uril (CB6), with an axis equipped with an additional binding motif that enables the binding of another macrocycle, cucurbit[7]uril (CB7).
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2024
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
Compared with their linear counterparts, cyclic peptides, characterized by their unique topologies, offer superior stability and enhanced functionality. In this review article, the rational design of cyclic peptide primary structures and their significant influence on self-assembly processes and functional capabilities are comprehensively reviewed. We emphasize how strategically modifying amino acid sequences and ring sizes critically dictate the formation and properties of peptide nanotubes (PNTs) and complex assemblies, such as rotaxanes.
View Article and Find Full Text PDFChemistry
January 2025
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
A series of unprecedented supramolecular complexes of covalently modified Anderson-type polyoxometalates (POMs) and α-cyclodextrins (α-CDs) have been obtained and characterized in solid state by single-crystal X-ray diffraction, and in aqueous solution using various techniques including H DOSY NMR, 2D NOESY H NMR, isothermal titration calorimetry (ITC), and electrospray ionization time-of-flight mass spectroscopy (ESI-TOF-MS). It has been demonstrated that the supramolecular assembly process could be modulated by different covalent modification modes of the Anderson POMs, giving rise to a new type of POM/α-CD complexes featuring organic-inorganic pseudo-rotaxane structures, which are in good contrast to those of POM/γ-CD complexes of poly-rotaxane structures. Moreover, it is delighted to find that these pseudo-rotaxanes of POM/α-CD complexes exhibit stable chirality in aqueous solution, which has not been accomplished in previously reported POM/CD assemblies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!