Platelet-surface interaction is of paramount importance in biomedical applications as well as in vitro studies. However, controlling platelet-surface activation is challenging and still requires more effort as they activate immediately when contacting with any nonphysiological surface. As hydrogels are highly biocompatible, in this study, we developed agarose and gelatin-based hydrogel films to inhibit platelet-surface adhesion. We found promising agarose films that exhibit higher surface wettability, better controlled-swelling properties, and greater stiffness compared to gelatin, resulting in a strong reduction of platelet adhesion. Mechanical properties and surface wettability of the hydrogel films were varied by adding magnetite (FeO) nanoparticles. While all of the films prevented platelet spreading, films formed by agarose and its nanocomposite repelled platelets and inhibited platelet adhesion and activation stronger than those of gelatin. Our results showed that platelet-surface activation is modulated by controlling the properties of the films underneath platelets and that the bioinert agarose can be potentially translated to the development of platelet storage and other medical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8153948 | PMC |
http://dx.doi.org/10.1021/acsomega.1c00764 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!