Ovarian cancer (OC) is the most lethal among female reproductive system malignancies. Depending upon the stage at presentation, the five year survival ratio varies from ∼92 to ∼30%. The role of biomarkers in early cancer diagnosis, including OC, is well understood. In our previous study, through an initial screening, we have analyzed eleven proteins that exhibited differential expression in OC using two-dimensional gel electrophoresis (2D-GE) and matrix-assisted laser desorption/ionization-time of flight mass spectrometric (MALDI-TOF MS) analysis. In continuation of our previous study, the present work describes analysis of twenty more proteins that showed aberrant expression in OC. Among these, six showed consistent significant deregulation in the OC false discovery rate [FDR ≤ 0.05]. Upon MS analysis, they were identified as vimentin, tubulin beta 2C chain, tubulin alpha 1C chain, actin cytoplasmic 2, apolipoprotein A-I, and collagen alpha 2(VI) chain [peptide mass fingerprint (PMF) score ≥ 79]. One of the differentially regulated proteins, tubulin beta 2C chain, was found to be significantly (fold change, 2.5) enhanced in OC. Verification by western blot and enzyme-linked immunosorbent assay (ELISA) demonstrated that the tubulin beta 2C chain may serve as a valuable marker for OC (ANOVA < 0.0001). The assessment of the likely association of TBB2C with OC in a larger population will not only help in developing clinically useful biomarkers in the future but also improve our understanding of the progression of OC disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8153795 | PMC |
http://dx.doi.org/10.1021/acsomega.0c03262 | DOI Listing |
Sci Adv
January 2025
MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
Microtubule assembly takes place at the centrosome and noncentrosomal microtubule-organizing centers (MTOCs). However, the mechanisms controlling the activity of noncentrosomal MTOCs are poorly understood. Here, using the fission yeast as a model organism, we demonstrate that the kinesin-14 motor Klp2 interacts with the J-domain Hsp70/Ssa1 cochaperone Rsp1, an inhibitory factor of microtubule assembly, and that Klp2 is required for the proper localization of Rsp1 to microtubules.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Pennsylvania, Philadelphia, PA, USA.
Background: Tau is a neuronal microtubule associated protein whose interactions with microtubules are regulated by phosphorylation. Tau has numerous putative phosphorylation sites, but it is unclear which combinations of Tau phosphorylation co-occur in the normal state and precisely how they impact Tau function. Adding further complexity, there are six major Tau isoforms arising from alternative splicing.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Iowa, Iowa City, IA, USA.
Background: Sorbs2 is a cytoskeletal adaptor protein that is expressed in hippocampal neurons, but its mechanistic role in these cells is not yet fully understood.
Method: We created two groups of mice for our study: whole-body Sorbs2-Knockout (KO) mice and Sorbs2-Flox mice, which had neuronal knockout via AAV-PHP.eB-hSyn1-Cre virus injection.
Alzheimers Dement
December 2024
The Neurodegeneration Consortium, UT MD Anderson Cancer Center, Houston, TX, USA.
Background: Chemotherapy-induced cognitive impairment (CICI) is a commonly reported neurotoxic side effect of chemotherapy, occurring in up to 75% cancer patients. Connections between chemo-treatment and increased risk of dementia have been reported. Mechanistically, chemotherapy treatment contributes to an accelerated aging phenotype in the brain through induction of pathogenic tau, disruption of neuronal integrity, reactive gliosis and neuroinflammation.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Yale University School of Medicine, New Haven, CT, USA.
Background: Our group has developed the innovative proximity labeling cell-type specific in vivo biotinylation of proteins (CIBOP) approach to quantify cell-specific in vivo proteomic and transcriptomic signatures that may lead to identify novel therapeutic targets for Alzheimer's disease (AD) pathogenesis. CIBOP uses TurboID, a biotin ligase, selectively expressed in the cell type of interest using a conditional Cre/lox genetic strategy to label the cytosolic proteome. Using mass spectrometry (MS)-based proteomics, we have found that TurboID biotinylates many RNA-binding and ribosomal proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!