Identification of Subgenomic DNAs Associated with Infection in Iran.

Iran J Biotechnol

Department of Agriculture and Natural Resources, Higher Education Center of Eghlid, Eghlid, Iran.

Published: October 2020

Background: (WDV) is a leafhopper-transmitted DNA virus which causes yellowing and stunting in wheat and barley fields leading to considerable crop loss around the world. Mainly, two host-specific forms of WDV have been characterized in wheat and barley (WDV-Wheat and WDV-Barley, respectively).

Objectives: This study was aimed to amplify, sequence and describe subgenomic DNAs (sgDNAs) associated with WDV infection among wheat and barley plants. The nucleotide sequence of sgDNAs were then compared to that of parental genomic DNAs (gDNAs) and the differences were shown.

Materials And Methods: A total of 65 symptomatic plants were surveyed for WDV infection using double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) and polymerase chain reaction (PCR). Rolling circle amplification followed by restriction analysis (RCA-RA) was applied to identify both gDNAs and sgDNAs in the infected wheat and barley plants. Nucleotide sequence of eight full-length WDV genomes and five sgDNAs were determined.

Results: Genomic sequences of WDV-Wheat and WDV-Barley isolates obtained in this study were identified as WDV-F and WDV-B, respectively, forming a separate cluster in the phylogenetic tree with the highest bootstrap support (100%). Sequence analysis of sgDNA molecules revealed that they have undergone different mutation events including deletions in viral genes, duplication of coding regions, and insertion of host-derived sequences.

Conclusions: The association of different types of sgDNAs were found in WDV-infected wheat and barley plants. The sgDNAs exhibited remarkable changes compared to their parental molecules and they might play a role in symptom severity, host genome evolution and emergence of new virus variants/species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8148644PMC
http://dx.doi.org/10.30498/IJB.2020.2472DOI Listing

Publication Analysis

Top Keywords

wheat barley
20
barley plants
12
subgenomic dnas
8
wdv-wheat wdv-barley
8
wdv infection
8
plants nucleotide
8
nucleotide sequence
8
compared parental
8
sgdnas
6
wdv
5

Similar Publications

This study examines the complex interactions between wheat cultivar selection and fortification with NaFeEDTA and ascorbic acid (AA) on the bioavailability of iron (Fe) and zinc (Zn) in whole wheat flour (WWF) and chapati. Nineteen hexaploid wheat cultivars were rigorously assessed for their intrinsic Fe and Zn profiles, including total content (TC), solubility (S), and bio-accessibility (B), utilizing an in-vitro gastrointestinal model. Significant variations (P < 0.

View Article and Find Full Text PDF

How to survive mild winters: Cold acclimation, deacclimation, and reacclimation in winter wheat and barley.

Plant Physiol Biochem

January 2025

Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic.

Cold acclimation and vernalization represent the major evolutionary adaptive responses to ensure winter survival of temperate plants. Due to climate change, mild winters can paradoxically worsen plant winter survival due to cold deacclimation induced by warm periods during winter. It seems that the ability of cold reacclimation in overwintering Triticeae cereals is limited, especially in vernalized plants.

View Article and Find Full Text PDF

Flavonoids are a large group of secondary metabolites, which are responsible for pigmentation, signaling, protection from unfavorable environmental conditions, and other important functions, as well as providing numerous benefits for human health. Various stages of flavonoid biosynthesis are subject to complex regulation by three groups of transcription regulators-MYC-like bHLH, R2R3-MYB and WDR which form the MBW regulatory complex. We attempt to cover the main aspects of this intriguing regulatory system in plants, as well as to summarize information on their distinctive features in cereals.

View Article and Find Full Text PDF

Effect of by-products-based diet and intramuscular fat content on volatile compounds from pork.

Meat Sci

January 2025

Ghent University, Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent, Belgium. Electronic address:

This study evaluated the effects of a fibre- and fat-rich by-products-based diet and the intramuscular fat (IMF) content on volatile compounds in pork. Meat samples were collected from sixteen gilts included in a feeding trial. Half of the animals were fed a conventional diet based on wheat, maize, barley and soybean meal, whereas the other half were fed a by-products-based diet that contained corn germ meal, malt sprouts, crispbread meal and proticorn, but no cereals or soya.

View Article and Find Full Text PDF

Barley yellow dwarf (BYD) is one of the most serious viral diseases in cereal crops worldwide. Identification of quantitative trait loci (QTLs) underlining wheat resistance to barley yellow dwarf virus (BYDV) is essential for breeding BYDV-tolerant wheat cultivars. In this study, a recombinant inbred line (RIL) population was developed from the cross between Jagger (PI 593688) and a Jagger mutant (JagMut1095).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!