Background: Sedated, closed reduction of a displaced distal radial fracture followed by cast immobilization is indicated in cases of unacceptable alignment on post-splint imaging. The aim of this procedure is to obtain acceptable reduction and cast immobilization for fracture-healing.

Description: The patient is positioned supine with the injured arm on the image intensifier. Adequate sedation is achieved with conscious sedation, general anesthesia, or regional anesthesia (hematoma block). The radial or ulnar translation is corrected with in-line traction. The wrist is typically hyperdorsiflexed, and traction is applied to the distal fragment. The distal fragment is then walked up and over as axial traction is applied and the wrist is brought from extension to flexion. The reduced wrist is held in a position of gentle flexion and slight ulnar deviation, and post-reduction fluoroscopy in anteroposterior and lateral views is obtained. A long-arm cast is applied by first applying a short-arm cast and a 3-point mold. Minimal cast padding is utilized to obtain the optimal "cast index." The wrist is re-imaged on the fluoroscopy device to obtain anteroposterior and lateral views.

Alternatives: Alternative treatments include cast immobilization in situ, closed reduction and percutaneous pinning, and open reduction and internal fixation.

Rationale: Closed reduction and cast immobilization is a low-risk procedure that has a high rate of union with acceptable alignment without the risk of an additional surgical procedure.

Expected Outcomes: The long-arm cast is maintained for 6 weeks, and radiographs are obtained at 1 and at 2 weeks postoperatively to confirm maintained alignment. It is advisable to instruct the patient not to put anything down the cast because this can result in skin breakdown. Additionally, care must be taken on removal of the cast. Cast saws should be kept sharp and be replaced frequently. There are commercially available "zip sticks" and other such devices to prevent cast-saw burns that should be utilized if cast technicians or residents are assisting in the removal. Following removal of the cast, we recommend wrist-motion exercises be performed 3 times daily. If the fracture line is clearly visible on radiographs, a removable wrist splint is utilized for another 2 to 4 weeks. A full return to activity is expected at 3 months. Some residual deformity is acceptable if the remodeling capacity is excellent at the distal aspect of the radius. However, the tolerance for malreduction decreases as the patient ages, if the deformity worsens, or if there is a deformity further from the physis.

Important Tips: Particular attention should be given to the median nerve sensory component. The thumb, index, and long fingers are assessed for sensation and compared with the 2 ulnar digits. Acute carpal tunnel syndrome is possible in children who have distal radial fractures.Waterproof cast padding is not recommended in cases in which a closed reduction is performed because such padding does not provide good protection to the skin with adequate cast molding.After reduction is obtained, no additional traction should be applied. If an assistant applies traction with the wrist in extension, reduction can be lost, so it is preferred to maintain the wrist in slight flexion while placing the cast.Although it is beneficial to hold the fracture in the cotton-loader position, this position should not be exaggerated because this position can cause excessive pressure on the carpal tunnel.The median nerve passes through the carpal tunnel and is often at risk because of hematoma formation as a result of a distal radial fracture.A cast index of 0.8 or more has been found to have an increased risk of failure of closed treatment. The cast index is the ratio of sagittal (measured on a lateral view) to coronal (measured on an anteroposterior view) width from the inside edges of the cast at the fracture site.Keeping cast saw blades sharp, using saws attached to vacuum devices, and cooling the blade while in use can prevent cast-saw burns.Zip sticks can be utilized to protect the skin but can sometimes be difficult to get under the cast.It is important to remember that swelling will occur following fracture reduction. The cast should not be wrapped tightly. Consideration should be given to bivalving the cast at the time of reduction and overwrapping after a few days when acute swelling has improved.Vigilance for growth arrest is necessary in patients with fractures of the distal aspect of the radius. This can occur in up to 4% to 5% of cases and is more common with reduction, particularly late reduction. Radiographic screening 6 to 12 months after the injury can help identify an early arrest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8154398PMC
http://dx.doi.org/10.2106/JBJS.ST.19.00059DOI Listing

Publication Analysis

Top Keywords

cast
21
closed reduction
20
distal radial
16
cast immobilization
16
reduction
12
reduction cast
12
traction applied
12
distal
8
traction wrist
8
distal fragment
8

Similar Publications

Background: Resistance to multiple herbicides is common in Lolium rigidum. Here, resistance to acetolactate synthase (ALS)- and susceptibility to acetyl-CoA carboxylase (ACCase)-inhibiting herbicides was confirmed in a glyphosate-resistant L. rigidum population (NLR70) from Australia and the mechanisms of pyroxsulam resistance were examined.

View Article and Find Full Text PDF

Study on the Mechanism of Energy Dissipation in Hemispherical Resonator Gyroscope.

Sensors (Basel)

December 2024

Space Control and Inertial Technology Research Center, Harbin Institute of Technology, Harbin 150080, China.

The hemispherical resonator gyroscope is a gyroscope based on the principle of Coriolis vibration, widely used in inertial measurement systems of spacecraft. This article decomposes the gyroscope into two parts: the resonator shell and the gyroscope head, establishes the energy dissipation mechanism of the gyroscope, and conducts experimental verification. Firstly, based on the working principle of the gyroscope, a mechanical analysis model of the hemispherical resonator gyroscope head with a resonator spherical shell containing quality defects under second-order vibration state was established.

View Article and Find Full Text PDF

Research Progress of Food-Derived Antihypertensive Peptides in Regulating the Key Factors of the Renin-Angiotensin System.

Nutrients

December 2024

Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.

Food protein-derived antihypertensive peptides have attracted substantial attention as a safer alternative for drugs. The regulation of the renin-angiotensin system (RAS) is an essential aspect underlying the mechanisms of antihypertensive peptides. Most of the identified antihypertensive peptides exhibit the angiotensin-converting enzyme (ACE) inhibitory effect.

View Article and Find Full Text PDF

Interface Microstructure and Properties of 42CrMo/Cr5 Vacuum Billet Forged Composite Roll.

Materials (Basel)

December 2024

State Key Laboratory of Roll Composite Materials, Sinosteel Xing Tai Mechanical Roll Co., Ltd., No. 1 Xinxing West Street, Xingtai 054000, China.

Composite roll produced through casting methods typically remain in the as-cast state after forming. During the preparation process, extended exposure to high temperatures often results in microstructural coarsening at the interface and surface layers, restricting their mechanical performance. To overcome this limitation, we developed a novel vacuum billet forging process for the fabrication of composite rolls.

View Article and Find Full Text PDF

Effect of Temperature and Stress on Creep Behavior of (TiB + TiC + YO)/α-Ti Composite.

Materials (Basel)

December 2024

National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001, China.

In this study, a (TiB + TiC + YO)/α-Ti composite was prepared by induction skull melting to investigate its creep behavior and microstructure evolution under different temperatures and stresses. The results show that the microstructure of the composite in the as-cast state is a basket-weave structure, and the main phase composition is α lamella, containing a small amount of β phase and equiaxed α phase. The creep life of the composite decreases significantly when the temperature is increased from 650 °C to 700 °C, and the steady-state creep rate is increased by 1 to 2 orders of magnitude.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!