Aberrant gene activation driven by the histone acetyltransferases p300 and CREB binding protein (CBP) has been linked to several diseases, including cancers. Because of this, many efforts have been aimed toward the targeting of the closely related paralogues, p300 and CBP, but these endeavors have been exclusively directed toward noncovalent inhibitors. X-ray crystallography of revealed that both p300 and CBP possess a cysteine (C1450) near the active site, thus rendering covalent inhibition an attractive chemical approach. Herein we report the development of compound , an acrylamide-based inhibitor of p300/CBP that forms a covalent adduct with C1450. We demonstrated using mass spectrometry that compound selectively targets C1450, and we also validated covalent binding using kinetics experiments and cellular washout studies. The discovery of covalent inhibitor gives us a unique tool for the study of p300/CBP biology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155265PMC
http://dx.doi.org/10.1021/acsmedchemlett.0c00654DOI Listing

Publication Analysis

Top Keywords

p300 cbp
8
covalent
5
discovery potent
4
potent selective
4
selective covalent
4
covalent p300/cbp
4
p300/cbp inhibitor
4
inhibitor aberrant
4
aberrant gene
4
gene activation
4

Similar Publications

The p53 protein is regarded as the "Guardian of the Genome," but its mutation is tumor progression and present in more than half of malignant tumors. The pro-metastatic property of mutant p53 makes a strong argument for targeting mutant p53 with new therapeutic strategies. However, mutant p53 was considered as a challenging target for drug discovery due to the lack of small molecular binding pockets.

View Article and Find Full Text PDF

The epigenetic cofactor ENL (eleven-nineteen-leukemia) and the acetyltransferase MOZ (monocytic leukemia zinc finger) have vital roles in transcriptional regulation and are implicated in aggressive forms of leukemia. Here, we describe the mechanistic basis for the intertwined association of ENL and MOZ. Genomic analysis shows that ENL and MOZ co-occupy active promoters and that MOZ recruits ENL to its gene targets.

View Article and Find Full Text PDF
Article Synopsis
  • The switch from oxidative phosphorylation to glycolysis is essential for activating microglia, particularly in the context of Parkinson's disease (PD).
  • Recent research shows that inhibiting glycolysis can reduce inflammation and protect dopaminergic neurons in PD mice by decreasing lactate levels.
  • The study identifies a significant role of histone lactylation, specifically H3K9, in promoting microglial activation, suggesting potential therapeutic avenues for managing neuroinflammation in PD.
View Article and Find Full Text PDF

Differences in protein lactylation between pale, soft and exudative and red, firm and non-exudative pork.

Meat Sci

March 2025

State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.

This study aimed to understand the development of pale, soft, and exudative (PSE) pork from a new perspective by comparing the differences of lactate-induced protein lactylation and its potential regulators including E1A binding protein p300 (p300) and cAMP response element binding protein (CBP) between PSE and red, firm, and non-exudative (RFN) pork at 1 h postmortem. Results demonstrated that PSE pork presented lower glycogen contents and higher lactate levels than RFN pork (P < 0.05).

View Article and Find Full Text PDF

Elevated EBF2 in mouse but not pig drives the progressive brown fat lineage specification via chromatin activation.

J Adv Res

December 2024

College of Animal Science, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Shandong Agricultural University, Taian, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China. Electronic address:

Brown adipose tissue (BAT) is responsible for non-shivering thermogenesis, but it is absent in some mammals, including pigs. During development, BAT progenitors are derived from paired box 7 (Pax7)-expressing somitic mesodermal stem cells, which also give rise to skeletal muscle. However, the intrinsic mechanisms underlying the fate decisions between brown fat and muscle progenitors remain elusive across species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!