Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The reverse transcriptase polymerase chain reaction (RT-PCR) is still the routinely used test for the diagnosis of SARS-CoV-2 (COVID-19). However, according to several reports, RT-PCR showed a low sensitivity and multiple tests may be required to rule out false negative results. Recently, chest computed tomography (CT) has been an efficient tool to diagnose COVID-19 as it is directly affecting the lungs. In this paper, we investigate the application of pre-trained models in diagnosing patients who are positive for COVID-19 and differentiating it from normal patients, who tested negative for coronavirus. The study aims to compare the generalization capabilities of deep learning models with two thoracic radiologists in diagnosing COVID-19 chest CT images. A dataset of 3000 images was obtained from the Near East Hospital, Cyprus, and used to train and to test the three employed pre-trained models. In a test set of 250 images used to evaluate the deep neural networks and the radiologists, it was found that deep networks (ResNet-18, ResNet-50, and DenseNet-201) can outperform the radiologists in terms of higher accuracy (97.8%), sensitivity (98.1%), specificity (97.3%), precision (98.4%), and F1-score (198.25%), in classifying COVID-19 images.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8112196 | PMC |
http://dx.doi.org/10.1155/2021/5527271 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!