Molecular Mechanisms of - and Exercise-Induced Cardiac Hypertrophy in Rats.

Evid Based Complement Alternat Med

Physiology Department, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.

Published: April 2021

Background: In our lab, we demonstrated cardiac hypertrophy induced by long-term administration of (Ns) with enhanced function. Therefore, we aim to investigate the molecular mechanisms of Ns-induced cardiac hypertrophy, compare it with that induced by exercise training, and explore any possible synergistic effect of these two interventions.

Method: Twenty adult Wistar male rats were divided into control (C), Ns-fed (N.s.), exercise-trained (Ex.), Ns-fed exercise-trained (N.s.Ex.) groups. 800 mg/kg of Ns was administered orally to N.s. rats. Ex. rats were trained on a treadmill with speed 18 m/min and grade 32° for two hours daily, and the N.s.Ex. group underwent both interventions. After 8 weeks, Immunohistochemical slides of the left ventricles were prepared using rat growth hormone (GH), insulin-like growth factor I (IGF-I), angiotensin-II receptors 1 (AT-I), endothelin-I (ET-1), Akt-1, and Erk-1. Cell diameter and number of nuclei were measured.

Results: Cardiomyocyte diameter, number of nuclei, GH, and Akt were significantly higher in N.s, Ex., and N.s.Ex groups compared with the controls. IGF-I, AT-1, and ET-1 were significantly higher in Ex. rats only compared with the controls. Erk-1 was lower in N.s., Ex., and N.s.Ex. compared with the controls.

Conclusion: We can conclude that Ns-induced cardiac hypertrophy is mediated by the GH-IGF I-PI3P-Akt pathway. Supplementation of Ns to exercise training protocol can block the upregulation of AT-I and ET-1. The combined N.s. exercise-induced cardiac hypertrophy might be a superior model of physiological cardiac hypertrophy and be used as a prophylactic therapy for athletes who are engaged in vigorous exercise activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8143887PMC
http://dx.doi.org/10.1155/2021/5553022DOI Listing

Publication Analysis

Top Keywords

cardiac hypertrophy
24
molecular mechanisms
8
exercise-induced cardiac
8
ns-induced cardiac
8
exercise training
8
ns-fed exercise-trained
8
nsex groups
8
diameter number
8
number nuclei
8
compared controls
8

Similar Publications

Cardiovascular-kidney-metabolic (CKM) syndrome is the association between obesity, diabetes, CKD (chronic kidney disease), and cardiovascular disease. GDF-15 mainly acts through the GFRAL (Glial cell line-derived neurotrophic factor Family Receptor Alpha-Like) receptor. GDF-15 and GDFRAL complex act mainly through RET co-receptors, further activating Ras and phosphatidylinositol-3-kinase (PI3K)/Akt pathways through downstream signaling.

View Article and Find Full Text PDF

Left ventricular hypertrophy in young hypertensives: the possible crosstalk of mTOR and angiotensin-II -a case-control study.

BMC Cardiovasc Disord

January 2025

Cardio/Endo-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria.

Background: Hypertension is a major cause of cardiac dysfunction. The earliest manifestation is left ventricular remodeling/hypertrophy. The occurrence of adverse cardiac remodeling and outcomes occurs irrespective of age in blacks.

View Article and Find Full Text PDF

Low-density lipoprotein receptor-related protein 6 ameliorates cardiac hypertrophy by regulating CTSD/HSP90α signaling during pressure overload.

Acta Pharmacol Sin

January 2025

Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, State Key Laboratory of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.

Pressure overload induces pathological cardiac remodeling, including cardiac hypertrophy and fibrosis, resulting in cardiac dysfunction or heart failure. Recently, we observed that the low-density lipoprotein receptor-related protein 6 (LRP6), has shown potential in enhancing cardiac function by mitigating cardiac fibrosis in a mouse model subjected to pressure overload. In this study, we investigated the role of LRP6 as a potential modulator of pressure overload-induced cardiac hypertrophy and elucidated the underlying molecular mechanisms.

View Article and Find Full Text PDF

A new and non-invasive technology of left ventricular pressure-strain loop (LV-PSL) has recently been used to provide information on myocardial work (MW) and identify subtle modifications in cardiac function. This study aimed to use LV-PSL for early identification of changes in LV structure and MW in patients with end-stage renal disease (ESRD). Methods: Seventy-two patients with ESRD were divided into two groups based on undergoing maintenance hemodialysis (MHD), namely the dialysis group (ESRD-D group) and non-dialysis group (ESRD-ND group).

View Article and Find Full Text PDF

Double outlet right ventricle (DORV) is a rare congenital heart defect where both the aorta and pulmonary artery originate from the right ventricle, often accompanied by additional cardiac anomalies to mitigate circulatory imbalance, though such compensations usually fail. We report a 15-month-old infant with recurrent respiratory infections and poor weight gain, referred for computed tomography angiography. Physical examination showed a small, non-syndromic infant with pallor, tachypnea, irritability, and finger clubbing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!