Interleukin-17A Causes Osteoarthritis-Like Transcriptional Changes in Human Osteoarthritis-Derived Chondrocytes and Synovial Fibroblasts .

Front Immunol

The Botnar Research Centre, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, United Kingdom.

Published: October 2021

Increased interleukin (IL)-17A has been identified in joints affected by osteoarthritis (OA), but it is unclear how IL-17A, and its family members IL-17AF and IL-17F, can contribute to human OA pathophysiology. Therefore, we aimed to evaluate the gene expression and signalling pathway activation effects of the different IL-17 family members in chondrocytes and synovial fibroblasts derived from cartilage and synovium of patients with end-stage knee OA. Immunohistochemistry staining confirmed that IL-17 receptor A (IL-17RA) and IL-17RC are expressed in end-stage OA-derived cartilage and synovium. Chondrocytes and synovial fibroblasts derived from end-stage OA patients were treated with IL-17A, IL-17AF, or IL-17F, and gene expression was assessed with bulk RNA-Seq. Hallmark pathway analysis showed that IL-17 cytokines regulated several OA pathophysiology-related pathways including immune-, angiogenesis-, and complement-pathways in both chondrocytes and synovial fibroblasts derived from end-stage OA patients. While overall IL-17A induced the strongest transcriptional response, followed by IL-17AF and IL-17F, not all genes followed this pattern. Disease-Gene Network analysis revealed that IL-17A-related changes in gene expression in these cells are associated with experimental arthritis, knee arthritis, and musculoskeletal disease gene-sets. Western blot analysis confirmed that IL-17A significantly activates p38 and p65 NF-κB. Incubation of chondrocytes and synovial fibroblasts with anti-IL-17A monoclonal antibody secukinumab significantly inhibited IL-17A-induced gene expression. In conclusion, the association of IL-17-induced transcriptional changes with arthritic gene-sets supports a role for IL-17A in OA pathophysiology. Future studies should further investigate the role of IL-17A in the OA joint to establish whether anti-IL-17 treatment could be a potential therapeutic option in OA patients with an inflammatory phenotype.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8153485PMC
http://dx.doi.org/10.3389/fimmu.2021.676173DOI Listing

Publication Analysis

Top Keywords

chondrocytes synovial
20
synovial fibroblasts
20
gene expression
16
il-17af il-17f
12
fibroblasts derived
12
transcriptional changes
8
family members
8
cartilage synovium
8
derived end-stage
8
end-stage patients
8

Similar Publications

Osteoarthritis (OA) is a degenerative bone disease characterized by the destruction of joint cartilage and synovial inflammation, involving intricate immune regulation processes. Disulfidptosis, a novel form of programmed cell death, has recently been identified; however, the effects and roles of disulfidptosis-related genes (DR-DEGs) in OA remain unclear. We obtained six OA datasets from the GEO database, using four as training sets and two as validation sets.

View Article and Find Full Text PDF

Purpose: To evaluate the relationship between preoperative whole-joint imaging evaluation of the knee with patient-reported outcome (PRO) measures after cartilage restoration surgery (mosaicplasty, osteochondral allograft transplantation, matrix autologous chondrocyte implantation).

Methods: We retrospectively evaluated patients who underwent knee articular cartilage restoration at our institution from 2014 to 2020. The patients' knee magnetic resonance imaging (MRI) was evaluated with the Whole-Organ Magnetic Resonance Imaging Score (WORMS) and semiquantitative synovial inflammation imaging biomarkers of the preoperative MRI.

View Article and Find Full Text PDF

Objective: The inflammatory responses from synovial fibroblasts and macrophages and the mitochondrial dysfunction in chondrocytes lead to oxidative stress, disrupt extracellular matrix (ECM) homeostasis, and accelerate the deterioration process of articular cartilage in osteoarthritis (OA). In recent years, it has been proposed that mesenchymal stromal cells (MSC) transfer their functional mitochondria to damaged cells in response to cellular stress, becoming one of the mechanisms underpinning their therapeutic effects. Therefore, we hypothesize that a novel cell-free treatment for OA could involve direct mitochondria transplantation, restoring both cellular and mitochondrial homeostasis.

View Article and Find Full Text PDF

The initial interzone cells for synovial joints originate from chondrocytes, but such critical transition is minimally understood. With single-cell RNA sequencing (scRNA-seq) of murine embryonic knee joint primordia, we discovered that heightened expression of glycolysis genes characterized developing interzone cells when compared to flanking chondrocytes. Conditional deletion of the glucose transporters and/or , in either the incipient pre-skeletal mesenchyme with or in chondrocytes with , disrupted interzone formation dose-dependently.

View Article and Find Full Text PDF

Osteoarthritis is a costly and debilitating condition, especially as the population ages and more people are affected. The primary osteoarthritis targets in the joint cavity are chondrocytes and synovial cells. Researchers are increasingly convinced that macrophages play a crucial role in the development or therapy of osteoarthritis despite being largely ignored in earlier studies due to their capacity to switch from a pro-inflammatory to an anti-inflammatory phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!