Silage treated with lactic acid bacteria inoculants has been reported to increase ruminal microbial biomass when tested in vitro. Therefore, we tested if alfalfa silage inoculated with Lactobacillus plantarum MTD-1 would improve ruminal N metabolism and increase milk production in high-producing dairy cows. Twenty-eight early lactation Holstein cows (8 ruminally cannulated) were blocked by DIM and milk production; animals were used in a double crossover design consisting of four 28-d periods. Animals in each block were randomly assigned to 2 treatments: a diet containing uninoculated alfalfa silage (control) and a diet containing alfalfa silage inoculated with L. plantarum MTD-1 (LP). Diets were formulated to contain 50% of alfalfa silage, 16% crude protein, and 25% neutral detergent fiber (dry matter basis). Milk production and dry matter intake were recorded in the last 14 d of each period. Milk samples were collected twice at both daily milkings on d 20, 21, 27, and 28 of each period. On d 22, omasal samples were collected from the cannulated animals over a period of 3 d to quantify ruminal digestibility and nutrient flows. Data were analyzed using mixed models of SAS 9.4 (SAS Institute). Compared to the control, cows receiving the LP treatment had greater milk production (40.4 vs. 39.6 kg/d) and lower milk urea nitrogen concentration (11.6 vs. 12.7 mg/dL), despite minor changes in energy-corrected milk. Milk lactose concentration was greater in the milk produced by cows fed the LP treatment, which reflected a tendency for increased milk lactose yield. Although milk true protein concentration was lower for cows in the LP treatment, milk true protein yield was the same on both control and LP treatments. Improvements in milk production of animals under the LP treatment were associated with greater organic matter truly digested in the rumen, especially ruminal neutral detergent fiber digestion. Minor changes were observed in total omasal microbial nonammonia N flow in cows receiving the LP treatment. Therefore, alfalfa silage treated with L. plantarum MTD-1 may improve ruminal fermentation and milk production; however, because of a lack of response in ruminal N metabolism, these changes did not result in greater energy-corrected milk in high-producing dairy cows.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2021-20155DOI Listing

Publication Analysis

Top Keywords

milk production
24
alfalfa silage
20
milk
15
high-producing dairy
12
dairy cows
12
plantarum mtd-1
12
lactic acid
8
acid bacteria
8
cows
8
silage treated
8

Similar Publications

A label-free, flexible, and disposable aptasensor was designed for the rapid on-site detection of vancomycin (VAN) levels. The electrochemical sensor was based on lab-printed carbon electrodes (C-PE) enriched with cauliflower-shaped gold nanostructures (AuNSs), on which VAN-specific aptamers were immobilized as biorecognition elements and short-chain thiols as blocking agents. The AuNSs, characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), enhanced the electrochemical properties of the platform and the aptamer immobilization active sites.

View Article and Find Full Text PDF

Effects of rumen-degradable starch on lactation performance, gastrointestinal fermentation, and plasma metabolomic in dairy cows.

Int J Biol Macromol

January 2025

State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Centre of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China. Electronic address:

This study investigated the effects of rumen-degradable starch (RDS) on lactation performance, gastrointestinal fermentation, and plasma metabolomics in dairy cows. Six mid-lactation cows, fitted with rumen, duodenum, and ileum cannulas, were used in a duplicated 3 × 3 Latin square design with 28-day periods. The cows were fed a low RDS (LRDS; 62.

View Article and Find Full Text PDF

Enhanced production of recombinant calf chymosin in Kluyveromyces lactis via CRISPR-Cas9 engineering.

Bioresour Technol

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan 430062, PR China. Electronic address:

As an important industrial enzyme, chymosin has been widely used in cheese manufacturing. Fermentation with Kluyveromyces lactis has allowed recombinant chymosin production to fit the growing global demand for cheese consumption; yet improvements can be made to allow for stable and larger-scale production. In this work, various chymosin producing (CP) strains were constructed via targeted chromosomal integration of various copies of a prochymosin expression cassette (PEC) using a CRISPR-Cas9 platform optimized for K.

View Article and Find Full Text PDF

Associations of Lifestyle Factors with Oral Cancer Risk: An Umbrella Review.

J Stomatol Oral Maxillofac Surg

January 2025

Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University / Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China.

Background: Oral cancer is a common head and neck cancer malignancy that seriously affects patients' quality of life and increases the health care burden. Moreover, there is a lack of comprehensive reviews of previous research on factors associated with oral cancer. The aim of the current umbrella review was to provide a comprehensive and systematic summary of relevant studies, to grade the quality of evidence of relevant studies, and to provide guidance for the prevention of oral cancer.

View Article and Find Full Text PDF

Perfluorocarboxylic acids and perfluorosulfonic acids accumulate in food webs, thus posing a serious threat to food safety. The European Food Safety Authority (EFSA) derived a tolerable weekly intake (TWI) of 4.4 ng/kg body weight for the sum of the four so-called EFSA-PFAS in 2020.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!