AI Article Synopsis

Article Abstract

Purpose: Exercise is known to reduce proinflammatory cytokines production and apoptosis. We investigated the effect of treadmill running on spatial learning memory in terms of activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathway in Alzheimer disease (AD) rats. We also evaluated the effect of treadmill running on proinflammatory cytokine production and apoptosis.

Methods: Using the stereotaxic frame, amyloid-β (Aβ) was injected into the lateral ventricle of the brain. The rats belong to treadmill running groups were forced to run on a motorized treadmill for 30 minutes per a day during 4 weeks, starting 3 days after Aβ injection. Morris water maze task was done for the determination of spatial learning memory. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, immunohistochemistry for cleaved caspase-3, and western blot for NF-κB, inhibitory protein of NF-κB (IκB), MAPK signaling pathway, tumor necrosis factor (TNF)-α, interleukin (IL)-1β were done.

Results: Induction of AD increased proinflammatory cytokine secretion by activating the NF-κB/MAPK signaling pathway. These changes induced apoptosis in the hippocampus and reduced spatial learning memory. In contrast, treadmill running inactivated the NF-κB/MAPK signaling pathway and suppressed proinflammatory cytokine production. These changes inhibited apoptosis and improved spatial learning memory.

Conclusion: Current results showed that treadmill running promoted spatial learning memory through suppressing proinflammatory cytokine production and apoptosis via inactivation of NF-κB/MAPK signaling pathway. Treadmill exercise can be considered an effective intervention for symptom relieve of AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8171239PMC
http://dx.doi.org/10.5213/inj.2142164.082DOI Listing

Publication Analysis

Top Keywords

treadmill running
24
spatial learning
24
signaling pathway
24
learning memory
20
proinflammatory cytokine
16
cytokine production
12
nf-κb/mapk signaling
12
treadmill
8
nuclear factor
8
factor kappa
8

Similar Publications

Mouse models for metabolic health research: molecular mechanism of exercise effects on health improvement through adipose tissue remodelling.

J Physiol

January 2025

Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.

Exercise provides health benefits to multiple metabolic tissues through complex biological pathways and interactions between organs. However, investigating these complex mechanisms in humans is still limited, making mouse models extremely useful for exploring exercise-induced changes in whole-body metabolism and health. In this review, we focus on gaining a broader understanding of the metabolic phenotypes and molecular mechanisms induced by exercise in mouse models.

View Article and Find Full Text PDF

Dataset of running kinematics, kinetics and muscle activation at different speeds, surface gradients, cadences and with forward trunk lean.

Data Brief

June 2024

NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Department of Nutrition and Movement Sciences, Maastricht, the Netherlands.

Data Collection Process: This dataset includes running biomechanics measured using an instrumented treadmill combined with three- dimensional motion capture and surface muscle activation among 19 healthy participants (10 males, 9 females, mean ± SD age 23.6 ± 3.7 years, body height 174.

View Article and Find Full Text PDF

During their daily lives humans are often confronted with sustained cognitive activities (SCA) leading to state fatigue, a psychobiological state characterized by a decrease in cognitive and/or motor performance and/or an increase in perception of fatigue. It was recently shown that performing SCA can impair overground dual-task gait performance in older adults, but it is currently unknown whether there is a task- and/or age-specific modulation in gait performance during treadmill walking. Therefore, the effect of a SCA on single- and dual-task treadmill walking performance was investigated in young and old adults.

View Article and Find Full Text PDF

Background: Nocturnal blood pressure dipping is crucial for cardiovascular health, but the effect of exercise on this phenomenon is not well understood. This study aims to investigate how a single session of aerobic exercise impacts nocturnal blood pressure dipping in individuals with hypertension who are on medication.

Methods: Twenty hypertensive adults (67 ± 16 years) participated in a randomised, parallel-group clinical trial.

View Article and Find Full Text PDF

Influence of puberty on high intensity exercise induced skeletal muscle damage and inflammatory response in sedentary boys.

Sports Med Health Sci

March 2025

Sports and Exercise Physiology Laboratory, Department of Physiology, University of Calcutta, University Colleges of Sciences and Technology, 92 A.P.C. Road, Kolkata, 700009, India.

The present investigation examined the influence of age and pubertal transition on magnitude of muscle damage and inflammatory response following high intensity incremental treadmill running till volitional exhaustion in sixty-four sedentary prepubertal ( ​= ​32) and postpubertal ( ​= ​32) boys who were randomly recruited in the study. Muscle damage and inflammatory markers like creatine kinase (CK), lactate dehydrogenase (LDH), alanine aminotransferase (ALT), aspartate aminotranferase (AST), C-Reactive Protein (CRP) and Interleukin-6 (IL-6) were estimated before and after exercise. Serum CK, LDH, AST, ALT, CRP and IL-6 levels significantly increased after exercise in both the groups in comparison to respective pre-exercise values.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!