It is important to know whether SARS-CoV-2 is spread through the air conditioning systems. Taking the central air conditioning system as an example, we analyze the mechanism and potential health risk of respiratory virus transmission in air-conditioned rooms and propose a method to study the risk of virus transmission in central air conditioning systems by investigating the data from medical experiments. The virus carrying capacity and the decay characteristics of indoor pathogen droplets are studied in this research. Additionally, the effects of air temperature and relative humidity on the virus survival in the air or on surfaces are investigated. The removal efficiency of infectious droplet nuclei by using an air conditioning filter was then determined. Thus, the transmission risk during the operation of the centralized air conditioning system is evaluated. The results show that the indoor temperature and humidity are controlled in the range of 20-25 °C and 40-70% by central air conditioning during the epidemic period, which not only benefits the health and comfort of residents, but also weakens the vitality of the virus. The larger the droplet size, the longer the viruses survive. Since the filter efficiency of the air conditioning filter increases with the increase in particle size, increasing the number of air changes of the circulating air volume can accelerate the removal of potential pathogen particles. Therefore, scientific operation of centralized air conditioning systems during the epidemic period has more advantages than disadvantages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8164484 | PMC |
http://dx.doi.org/10.1007/s11356-021-14495-0 | DOI Listing |
J Dent
January 2025
DDS, MS, PhD, Department of Dentistry, Federal University of Rio Grande do Norte, Natal, Brazil. Electronic address:
Objective: To evaluate the influence of different cleaning methods, surface treatments, and aging on the repair bond strength to a CAD/CAM glass-ceramic.
Materials And Methods: Forty-eight lithium disilicate CAD/CAM ceramic blocks were fabricated, sintered, and embedded in acrylic resin. After contamination with human saliva, they were divided according to the factors "Cleaning method" (Control-water/air spray, Air-particle abrasion with AlO, Ivoclean cleaning paste), "Surface treatment" (5% Hydrofluoric acid-HF + Silane, Monobond Etch & Prime-MEP), and "Aging" (thermocycling, no thermocycling).
J Am Acad Orthop Surg Glob Res Rev
January 2025
From the Department of Orthopaedics and Sports Medicine, Mercy Health St. Vincent Medical Center, Toledo, OH (Dr. Simmons); the Department of Orthopedic Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH (Dr. Vesselle); the Department of Orthopaedic Surgery, MetroHealth Medical Center, Cleveland, OH (Dr. Yildirim, Dr. Bafus); the Town Center Orthopaedics, Reston, VA (Dr. Yildirim); and the Louis Stokes Cleveland VA Medical Center, Cleveland, OH (Dr. Bafus).
High-pressure injection injuries, although rare, are commonly discussed orthopaedic surgical emergencies. In many cases, high-pressure injection injuries can have detrimental effects on the patient. However, there are rare instances where surgical intervention may be more harmful than helpful.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Metal Forming, Welding and Metrology, Wroclaw University of Science and Technology, Lukasiewicza Street 5, 50-370 Wroclaw, Poland.
This paper provides a detailed analysis of the operation of representative forging tools (in the context of using various surface engineering techniques) used in the process of the hot forging of nickel-chromium steel elements. The influence of the microstructure and hardness of the material on the durability of the tools is also discussed, which is important for understanding the mechanisms of their wear. The research showed that the standard tools used in the process (only after nitriding) as a reference point worked for the shortest period, making an average of about 1400 forgings.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Energy and Refrigerating Air-Conditioning Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan.
This study employs first-principles calculations to investigate the geometric and electronic properties of hydrogenated silicon nanotubes (SiNTs). SiNTs, particularly in their gear-like configuration, demonstrate unique semiconducting behavior; however, their relatively small intrinsic band gaps limit their applicability in fields requiring moderate band gaps. Significant changes in electronic properties are observed by hydrogenating SiNTs at various levels of adsorption-either full or partial-and different surface configurations (exterior, interior, or dual-sided).
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran.
This investigation presents extensive computational analyses of the compressible flow near ramp injector with double circular injectors at supersonic combustor of scramjet engine. Comparison of the fuel mixing and fuel jet penetration of hydrogen jet are done for two injector configurations at free stream Mach number of 2. The simulation of the supersonic flow near ramp injector is done via solving RANS equations with computational fluid dynamic technique.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!