The hippocampus plays a crucial role in learning and memory, and its progressive deterioration with age is functionally linked to a variety of human neurodegenerative diseases. Yet a systematic profiling of the aging effects on various hippocampal cell types in primates is still missing. Here, we reported a variety of new aging-associated phenotypic changes of the primate hippocampus. These include, in particular, increased DNA damage and heterochromatin erosion with time, alongside loss of proteostasis and elevated inflammation. To understand their cellular and molecular causes, we established the first single-nucleus transcriptomic atlas of primate hippocampal aging. Among the 12 identified cell types, neural transiently amplifying progenitor cell (TAPC) and microglia were most affected by aging. In-depth dissection of gene-expression dynamics revealed impaired TAPC division and compromised neuronal function along the neurogenesis trajectory; additionally elevated pro-inflammatory responses in the aged microglia and oligodendrocyte, as well as dysregulated coagulation pathways in the aged endothelial cells may contribute to a hostile microenvironment for neurogenesis. This rich resource for understanding primate hippocampal aging may provide potential diagnostic biomarkers and therapeutic interventions against age-related neurodegenerative diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8403220 | PMC |
http://dx.doi.org/10.1007/s13238-021-00852-9 | DOI Listing |
Alzheimers Res Ther
January 2025
Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Crta M40, km38, Madrid, 28223, Spain.
Background: Dementia patients commonly present multiple neuropathologies, worsening cognitive function, yet structural neuroimaging signatures of dementia have not been positioned in the context of combined pathology. In this study, we implemented an MRI voxel-based approach to explore combined and independent effects of dementia pathologies on grey and white matter structural changes.
Methods: In 91 amnestic dementia patients with post-mortem brain donation, grey matter density and white matter hyperintensity (WMH) burdens were obtained from pre-mortem MRI and analyzed in relation to Alzheimer's, vascular, Lewy body, TDP-43, and hippocampal sclerosis (HS) pathologies.
JAMA Netw Open
December 2024
Department of Psychological and Brain Sciences, Washington University in St Louis, Missouri.
Importance: The extent to which neuroanatomical variability associated with early substance involvement, which is associated with subsequent risk for substance use disorder development, reflects preexisting risk and/or consequences of substance exposure remains poorly understood.
Objective: To examine neuroanatomical features associated with early substance use initiation and to what extent associations may reflect preexisting vulnerability.
Design, Setting, And Participants: Cohort study using data from baseline through 3-year follow-up assessments of the ongoing longitudinal Adolescent Brain Cognitive Development Study.
Immun Inflamm Dis
January 2025
Department of Clinical Laboratory, Norinco General Hospital, Xi'an, Shaanxi, China.
Background: Recent studies show that N6-methyladenosine (m6A) plays an important role in the pathogenesis of the Alzheimer's disease (AD), while the mechanisms involved were studied insufficiently.
Aims: The present study aimed to explore the effect of human insulin-like growth factor 2 (IGF2) mRNA binding proteins 2 (IGF2BP2), one of the m6A-binding proteins on the progression of AD.
Materials & Methods: The mRNA and protein expression level were determined using RT-qPCR and western blot, respectively.
Int J Med Sci
January 2025
Department of Emergency Medicine, Chi Mei Medical Center, Tainan, Taiwan.
Effective therapies for cognitive impairments induced by brain irradiation are currently lacking. This study investigated the therapeutic potential of hyperbaric oxygen therapy (HBOT) for radiation-induced brain injury in a randomized controlled experimental model using adult male Wistar rats. Adult male Wistar rats were divided into four experimental groups: 0 Gy whole brain radiotherapy (WBRT) with normal baric air (NBA) treatment, 0 Gy WBRT with HBOT, 10 Gy WBRT with NBA, and 10 Gy WBRT with HBOT.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory of Biomedical Imaging and Data Analysis, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, St. Petersburg, Russia, 194021.
One of the mechanisms of calcium signalling in neurons is store-operated calcium entry (SOCE), which is activated when the calcium concentration in the smooth endoplasmic reticulum (ER) decreases and its protein-calcium sensor STIM (stromal interacting molecule) relocate to the endoplasmic reticulum and plasma membrane junctions, forms clusters and induces calcium entry. In electrically non-excitable cells, STIM1 is coupled with the positive end of a tubulin microtubule through interaction with EB1 (end-binding) protein, which controls its oligomerization, SOCE and participates in ER movement. STIM2 homologue, which is specific for mature hippocampal dendritic spines, is known to interact with EB3 protein, however, not much is known about the role of this interaction in STIM2 clustering or ER trafficking in neurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!