Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Deficits in hippocampal cellular and synaptic plasticity are frequently associated with cognitive and mood disorders, and indeed common mechanisms of antidepressants are thought to involve neuroplastic processes. Here, we investigate hippocampal adult-born cell survival and synaptic plasticity (long-term potentiation, LTP, and long-term depression, LTD) in serotonin transporter (5-HTT) knockout (KO) mice. From 8 weeks of age, mice either continued in standard-housing conditions or were given access to voluntary running wheels for 1 month. Electrophysiology was performed on hippocampal slices to measure LTP and LTD, and immunohistochemistry was used to assess cell proliferation and subsequent survival in the dentate gyrus. The results revealed a reduced LTP in 5-HTT KO mice that was restored to wild-type (WT) levels after chronic exercise. While LTD appeared normal in 5-HTT KO, exercise decreased the magnitude of LTD in both WT and 5-HTT KO mice. Furthermore, although 5-HTT KO mice had normal hippocampal adult-born cell survival, they did not benefit from the pro-proliferative effects of exercise observed in WT animals. Taken together, these findings suggest that reduced 5-HTT expression is associated with significant alterations to functional neuroplasticity. Interestingly, 5-HTT appeared necessary for exercise-induced augmentation of adult-born hippocampal cell survival, yet exercise corrected the LTP impairment displayed by 5-HTT KO mice. Together, our findings further highlight the salience of serotonergic signalling in mediating the neurophysiological benefits of exercise.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00429-021-02283-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!