α-VO has been extensively explored as a Mg intercalation host with potential as a battery cathode, offering high theoretical capacities and potentials vs. Mg/Mg. However, large voltage hysteresis is observed with Mg insertion and extraction, introducing significant and unacceptable round-trip energy losses with cycling. Conventional interpretations suggest that bulk ion transport of Mg within the cathode particles is the major source of this hysteresis. Herein, we demonstrate that nanosizing α-VO gives a measurable reduction to voltage hysteresis on the first cycle that substantially raises energy efficiency, indicating that mechanical formatting of the α-VO particles contributes to hysteresis. However, no measurable improvement in hysteresis is found in the nanosized α-VO in latter cycles despite the much shorter diffusion lengths, suggesting that other factors aside from Mg transport, such as Mg transfer between the electrolyte and electrode, contribute to this hysteresis. This observation is in sharp contrast to the conventional interpretation of Mg electrochemistry. Therefore, this study uncovers critical fundamental underpinning limiting factors in Mg battery electrochemistry, and constitutes a pivotal step towards a high-voltage, high-capacity electrode material suitable for Mg batteries with high energy density.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1nr03080a | DOI Listing |
Chem Sci
December 2024
Materials Innovation Factory, Department of Chemistry, University of Liverpool 51 Oxford Street L7 3NY Liverpool UK
Dalton Trans
January 2025
Departamento de Física dos Materiais e Mecânica, Instituto de Física, Universidade de São Paulo, C. P. 66318, São Paulo, SP, 05508-090, Brazil.
Distortions in the porphyrin core from planarity can trigger a unique structure-property relationship, imparting its basicity, chemical stability, redox potential, and excited-state energetics, among other properties. The colour change promoted by such distortion is signed by red shifts in its electronic absorption spectra. The adsorption of guest -substituted free-base porphyrin species onto inorganic hosts, such as clay minerals (layered aluminium or magnesium silicates), is known to further promote colour changes.
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China.
Compared with widely established monovalent-ion batteries, aqueous multivalent-ion batteries promise higher capacity release by achieving multiple electron-transfer events per ion intercalation in the host material. Despite plausibility, this high-capacity dream is untenable with the total tolerable redox charge-transfer limit of the host material for all carrier species equally, which is historically assumed to depend on the material rather than the guest carrier itself, and the kinetic hysteresis induced by larger charge/radius ratios induced kinetic hysteresis further enlarges the divide. Herein, we report that copper carrier redox in vanadium sulfide (VS) exceeds the intrinsic intercalation capacity boundary, with the highest capacity release as 675 mAh g at 0.
View Article and Find Full Text PDFACS Nano
December 2024
IMDEA Nanoscience, C/Faraday 9, 28049 Madrid, Spain.
The existence of superconductivity (SC) appears to be established in both twisted and nontwisted graphene multilayers. However, whether their building block, single-layer graphene (SLG), can also host SC remains an open question. Earlier theoretical works predicted that SLG could become a chiral -wave superconductor driven by electronic interactions when doped to its van Hove singularity, but questions such as whether the -wave SC survives the strong band renormalizations seen in experiments, its robustness against the source of doping, or if it will occur at any reasonable critical temperature () have remained difficult to answer, in part due to uncertainties in model parameters.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Physics, Indian Institute of Technology, Gandhinagar, Gujarat 382355, India.
Memristors that mimic brain functions are crucial for energy-efficient neuromorphic devices. Ion channels that emulate biological synapses are still in the early stages of development, especially the tunability of memory states. Here, we demonstrate that cations such as K, Na, Ca, and Al intercalated in the interlayer spaces of vermiculite result in highly confined channels of size 3-5 Å.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!