CopA Protects Actinobacillus pleuropneumoniae against Copper Toxicity.

Vet Microbiol

State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; State Key Laboratory of Genetically Engineered Veterinary Vaccines, Qingdao, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China. Electronic address:

Published: July 2021

Actinobacillus pleuropneumoniae is a Gram-negative bacterium causing porcine pleuropneumonia and severe economic losses in the global swine industry. The toxic trace element copper is required for many physiological and pathological processes in organisms. However, CopA, one of the most well-characterized P-type ATPases contributing to copper resistance, has not been characterized in A. pleuropneumoniae. We used quantitative PCR analysis to examine expression of the copA gene in A. pleuropneumoniae and investigated sequence conservation among serotypes and other Gram-negative bacteria. Growth characteristics were determined using growth curve analyses and spot dilution assays of the wild-type strain and a △copA mutant. We also used flame atomic absorption spectrophotometry to determine intracellular copper content and examined the virulence of the △copA mutant in a mouse model. The copA expression was induced by copper, and its nucleotide sequence was highly conserved among different serotypes of A. pleuropneumoniae. The amino acid sequence of CopA shared high identity with CopA sequences reported from several Gram-negative bacteria. Furthermore, the △copA mutant exhibited impaired growth and had higher intracellular copper content compared with the wild-type strain when supplemented with copper. The mouse model revealed that CopA had no influence on the virulence of A. pleuropneumoniae. In conclusion, these results demonstrated that CopA is required for resistance of A. pleuropneumoniae to copper and protects A. pleuropneumoniae against copper toxicity via copper efflux.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetmic.2021.109122DOI Listing

Publication Analysis

Top Keywords

pleuropneumoniae copper
12
△copa mutant
12
copper
10
copa
8
pleuropneumoniae
8
actinobacillus pleuropneumoniae
8
copper toxicity
8
gram-negative bacteria
8
wild-type strain
8
intracellular copper
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!