Developing highly-efficient multifunctional electrocatalysts for energy conversion devices is of great importance. A sequence of nano-sized bimetal (Al, Cr, Fe) niobium oxide nanoparticles anchored on aloe peel-derived porous carbon skeleton hybrids (AN/APPC, CN/APPC, and FN/APPC) are successfully prepared via co-precipitation avenue and used as electrocatalysts for photovoltaics and alkaline hydrogen evolution reaction. Benefiting from the synergies between nano-sized metal niobium oxides and highly conductive porous carbon skeleton, these robust polycomponent hybrid electrocatalysts exhibit superior catalytic performances for accelerating the triiodide reduction and hydrogen evolution reaction. The solar cell with AN/APPC electrocatalyst achieves an outstanding device efficiency of 7.31%, superior to that with Pt (6.84%), and the AN/APPC electrocatalyst exhibit an overpotential (131.6 mV) when the current density is 10 mA cm and Tafel slope (54 mV dec) in 1 M KOH for hydrogen evolution reaction. The AN/APPC electrocatalysts illustrate remarkable electrochemical durability in both I/I electrolyte and alkaline media. Furthermore, the catalytic mechanism was clarified both from the electronic structure and work function through first-principle density functional theory (DFT) calculations. This work opens a new avenue for electrocatalysis field via using nano-sized porous bio-carbon skeleton loaded with niobium-based binary metal.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.05.060DOI Listing

Publication Analysis

Top Keywords

hydrogen evolution
16
porous carbon
12
carbon skeleton
12
evolution reaction
12
photovoltaics alkaline
8
alkaline hydrogen
8
an/appc electrocatalyst
8
insight electrocatalytic
4
electrocatalytic activity
4
activity mechanism
4

Similar Publications

Realization of a sustainable hydrogen economy in the future requires the development of efficient and cost-effective catalysts for its production at scale. MXenes (MX) are a class of 2D materials with 'n' layers of carbon or nitrogen (X) interleaved by 'n+1' layers of transition metal (M) and have emerged as promising materials for various applications including catalysts for hydrogen evolution reaction (HER). Their properties are intimately related to both their composition and their atomic structure.

View Article and Find Full Text PDF

The high entropy alloy (HEA) possesses distinctive thermal stability and electronic characteristics, which exhibits substantial potential for diverse applications in electrocatalytic reactions. However, accurately controlling the size of HEA still remains a challenge, especially for the ultrasmall HEA nanoparticles. Herein, we firstly calculate and illustrate the size impact on the electronic structure of HEA and the adsorption energies of crucial intermediates in typical electrocatalytic reactions, such as the hydrogen evolution reaction (HER), oxygen reduction reaction (ORR), CO2 electroreduction (CO2RR) and NO3- electroreduction (NO3RR).

View Article and Find Full Text PDF

Herein, we first report a photocatalytic OCM using CO2 as a soft oxidant for C2H6 production under mild conditions, where an efficient photocatalyst with unique interface sites is constructed to facilitate CO2 adsorption and activation, while concurrently boosting CH4 dissociation. As a prototype, the Au quantum dots anchored on oxygen-deficient TiO2 nanosheets are fabricated, where the Au-Vo-Ti interface sites for CO2 adsorption and activation are collectively disclosed by in situ Kelvin probe force microscopy, quasi in situ X-ray photoelectron spectroscopy and theoretical calculations. Compared with single metal site, the Au-Vo-Ti interface sites exhibit the lower CO2 adsorption energy and decrease the energy barrier of the *CO2 hydrogenation step from 1.

View Article and Find Full Text PDF

This analysis revealed the alterations in the pore structure of large organic molecules in coal during the process of coal pyrolysis. Nine models of macromolecular structures in coals, representing distinct coal ranks, have been built. The research results show that along with the increasing coal rank, the average microporous volume of medium rank coal is 0.

View Article and Find Full Text PDF

Towards Accurate Biocompatibility: Rethinking Cytotoxicity Evaluation for Biodegradable Magnesium Alloys in Biomedical Applications.

J Funct Biomater

December 2024

CS-Surgical Sciences and Technologies-SS Omics Science Platform for Personalized Orthopedics, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.

Magnesium and its alloys represent promising candidates for biomedical implants due to their biodegradability and mechanical properties, which are similar to natural bone. However, their rapid degradation process characterized by dynamic pH fluctuations and significant hydrogen gas evolution during biocorrosion adversely affects both in vitro and in vivo assessments. While the ISO 10993-5 and 12 standards provide guidelines for evaluating the in vitro biocompatibility of biodegradable materials, they also introduce testing variability conditions that yield inconsistent results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!