A New Hypothesis for Type 1 Diabetes Risk: The At-Risk Allele at rs3842753 Associates With Increased Beta-Cell INS Messenger RNA in a Meta-Analysis of Single-Cell RNA-Sequencing Data.

Can J Diabetes

Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada. Electronic address:

Published: December 2021

Objectives: Type 1 diabetes is characterized by the autoimmune destruction of insulin-secreting beta cells. Genetic variants upstream at the insulin (INS) locus contribute to ∼10% of type 1 diabetes heritable risk. Previous studies showed an association between rs3842753 C/C genotype and type 1 diabetes susceptibility, but the molecular mechanisms remain unclear. To date, no large-scale studies have looked at the effect of genetic variation at rs3842753 on INS mRNA at the single-cell level.

Methods: We aligned all human islet single-cell RNA sequencing data sets available to us in year 2020 to the reference genome GRCh38.98 and genotyped rs3842753, integrating 2,315 β cells and 1,223 β-like cells from 13 A/A protected donors, 23 A/C heterozygous donors and 35 C/C at-risk donors, including adults without diabetes and with type 2 diabetes.

Results: INS expression mean and variance were significantly higher in single β cells from females compared with males. On comparing across β cells and β-like cells, we found that rs3842753 C‒containing cells (either homozygous or heterozygous) had the highest INS expression. We also found that β cells with the rs3842753 C allele had significantly higher endoplasmic reticulum stress marker gene expression compared with the A/A homozygous genotype.

Conclusions: These findings support the emerging concept that inherited risk of type 1 diabetes may be associated with inborn, persistent elevated insulin production, which may lead to β-cell endoplasmic reticulum stress and fragility.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcjd.2021.03.007DOI Listing

Publication Analysis

Top Keywords

type diabetes
20
cells
8
β-like cells
8
ins expression
8
cells rs3842753
8
endoplasmic reticulum
8
reticulum stress
8
diabetes
6
rs3842753
6
ins
5

Similar Publications

Objective: Assess if a virtual culinary medicine program improves healthy eating, glycosylated hemoglobin (HbA1c), and associated variables among adults with type 2 diabetes.

Design: Mixed-methods, intervention-only pilot study.

Setting: Classes via video conferencing from the teaching kitchen, with participants cooking from their homes.

View Article and Find Full Text PDF

Visceral fat distribution: Interracial studies.

Adv Clin Chem

January 2025

Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China. Electronic address:

Visceral adipose tissue, a type of abdominal adipose tissue, is highly involved in lipolysis. Because increased visceral adiposity is strongly associated with the metabolic complications related with obesity, such as type 2 diabetes and cardiovascular disease, there is a need for precise, targeted, personalized and site-specific measures clinically. Existing studies showed that ectopic fat accumulation may be characterized differently among different populations due to complex genetic architecture and non-genetic or epigenetic components, ie, Asians have more and Africans have less visceral fat vs Europeans.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) represents a chronic metabolic disorder characterized by disrupted carbohydrate and lipid balance, resulting in hyperglycemia. This study evaluated the impact of polysaccharides derived from Cynanchum auriculatum Royle ex Wight (CRP) on mitigating hyperglycemia and modulating intestinal microbiota in T2DM mice. Findings indicated that CRP is mainly linked by →6)α-D-Glcp-(1→ and CRP-H demonstrated greater efficacy than CRP-L in regulating hypoglycemic-related indicators such as serum high-density lipoprotein cholesterol (HDL-c) level.

View Article and Find Full Text PDF

Chapter 6: SYNDROMIC PRIMARY HYPERPARATHYROIDISM.

Ann Endocrinol (Paris)

January 2025

Endocrinology Department, Huriez Hospital, Lille University Hospital, France. Electronic address:

Syndromic primary hyperparathyroidism has several features in common: younger age at diagnosis when compared with sporadic primary hyperparathyroidism, often synchronous or metachronous multi-glandular involvement, higher possibility of recurrence, association with other endocrine or extra-endocrine disorders, and suggestive family background with autosomal dominant inheritance. Hyperparathyroidism in multiple endocrine neoplasia type 1 is the most common syndromic hyperparathyroidism. It is often asymptomatic in adolescents and young adults, but may be responsible for recurrent lithiasis and/or bone loss.

View Article and Find Full Text PDF

Exercise and exerkines: Mechanisms and roles in anti-aging and disease prevention.

Exp Gerontol

January 2025

Shanghai anti-doping Laboratory, Shanghai University of Sport, Shanghai 200438, China; Department of Rheumatology and Immunology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

Aging is a complex biological process characterized by increased inflammation and susceptibility to various age-related diseases, including cognitive decline, osteoporosis, and type 2 diabetes. Exercise has been shown to modulate mitochondrial function, immune responses, and inflammatory pathways, thereby attenuating aging through the regulation of exerkines secreted by diverse tissues and organs. These bioactive molecules, which include hepatokines, myokines, adipokines, osteokines, and neurokines, act both locally and systemically to exert protective effects against the detrimental aspects of aging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!