Magnetic surfactants are a special class of surfactants with magneto-responsive properties. These surfactants possess lower critical micelle concentrations and are more effective in reducing surface tension as compared to conventional surfactants. Such surfactants' ability to manipulate self-assembly in a controlled way by tuning the magnetic field makes them an attractive choice for several applications, including drug delivery, catalysis, separation, oilfield, and water treatment. In this work, we reviewed the properties of magnetic surfactants and possible explanations of magnetic behavior. This article also covers the synthesis methods that can be used to synthesize different types of cationic, anionic, nonionic, and zwitterionic magnetic surfactants. The applications of magnetic surfactants in different fields such as biotechnology, water treatment, catalysis, and oilfield have been discussed in detail.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cis.2021.102441 | DOI Listing |
Chembiochem
January 2025
Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada.
This study describes an enzymatic pathway to produce high purity 4-O-methylglucaric acid from xylan, an underutilized fraction of lignocellulosic biomass. Beechwood xylan was enzymatically hydrolysed using a commercial xylanase and an α-glucuronidase from Amphibacillus xylanus to form 4-O-methylglucuronic acid, which was then purified by anion exchange chromatography and subsequently oxidized to 4-O-methylglucaric acid using a recombinantly produced uronic acid oxidase from Citrus sinensis. Enzymatic oxidation with uronic acid oxidase afforded 95 % yield in 72 hours which is considerably higher than yields previously achieved using a glucooligosaccharide oxidase from Sarocladium strictum.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, People's Republic of China.
RNA interference (RNAi) and oxidative stress inhibition therapeutic strategies have been extensively utilized in the treatment of osteoarthritis (OA), the most prevalent degenerative joint disease. However, the synergistic effects of these approaches on attenuating OA progression remain largely unexplored. In this study, matrix metalloproteinase-13 siRNA (siMMP-13) was incorporated onto polyethylenimine (PEI)-polyethylene glycol (PEG) modified FeO nanoparticles, forming a nucleic acid nanocarrier termed si-Fe NPs.
View Article and Find Full Text PDFJ Bone Joint Surg Am
January 2025
Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China.
Background: Early knee effusion is a common phenomenon after total knee arthroplasty (TKA), with potential clinical implications. Unlike traditional alloy knee prostheses, the polyetheretherketone (PEEK) knee system has radiographic transparency on magnetic resonance (MR) scans, which allows analysis of prosthetic knee effusion. We aimed to identify the distribution and volume of knee effusion after TKA with the PEEK prosthesis with use of MR imaging and to analyze whether dynamic changes in effusion were correlated with serum inflammatory marker changes and knee function recovery.
View Article and Find Full Text PDFLangmuir
January 2025
Research Focus Area for Chemical Resource Beneficiation, Catalysis and Synthesis Research Group, North-West University, 11 Hoffman Street, Potchefstroom 2522, South Africa.
This study investigates the surfactant properties and efficiency of linear and Guerbet-type amino acid surfactants. Utilizing a Wilhelmy plate method, we assessed the colloidal efficiency of these surfactants, with the lowest observed critical micelle concentration at 0.046 mmol L, significantly reducing surface tension to as low as 25.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, 48940 Leioa, Greater Bilbao, Basque Country, Spain.
Magnetic nanoparticles (NPs) are gaining significant interest in the field of biomedical functional nanomaterials because of their distinctive chemical and physical characteristics, particularly in drug delivery and magnetic hyperthermia applications. In this paper, we experimentally synthesized and characterized new FeO-based NPs, functionalizing its surface with a 5-TAMRA cadaverine modified copolymer consisting of PMAO and PEG. Despite these advancements, many combinations of NP cores and coatings remain unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!