Current study was carried out with an objective to remediate highly contaminated sludge with HMX and RDX obtained from an explosive manufacturing facility in North India employing indigenous microbes, Arthrobacter subterraneus (isolate no. S2-TSB-17) and Bacillus sonorensis (isolate no. S8-TSB-4) which were isolated from the same contaminated site. In-vessel composting of the explosive contaminated sludge was performed in 12 different bioreactors using cow manure and garden waste as bulking agents. 78.5% degradation of HMX was observed in reactor no. 2 with Bacillus sonorensis having combination of 10% sludge, 70% cow manure and 20% garden waste on 80th day. Two secondary metabolites Bis(hydroxymethyl)nitramine and methylene dinitramine were identified while studying the degradation pathway. Similarly, degradation of 91.2% was observed for RDX in reactor no. 11 with consortia of Arthrobacter subterraneus and Bacillus sonorensis on 80th day. During the study, release of significant nitrate and nitrite ions were observed. It has already been established that RDX and HMX degradation leads to release of nitrite/nitrate ions. The highest nitrite (reactor no. 11) and nitrate (reactor no. 2) release observed were 24.02 ± 0.05 mg/kg and 30.65 ± 0.99 mg/kg on 50th and 70th day, respectively. Scanning electron microscopic studies confirmed the attachment and presence of microbes with solid surface and no deformation in structure was observed in the microbial cells due to contamination stress. Findings of the study concluded that in-vessel composting assisted with native bacterial species can be a potential technology for the treatment of explosive contaminated sludge at the contaminated sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2021.117394 | DOI Listing |
Sci Total Environ
January 2025
Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand. Electronic address:
Tomato brown rugose fruit virus (ToBRFV) has emerged as a major plant pathogen with the potential to spread through contaminated wastewater, posing risks to agriculture and public health. This study evaluated ToBRFV as a human-specific microbial source tracking (MST) marker in Thailand, comparing its performance to crAssphage. Using qPCR assays, ToBRFV was detected in 62.
View Article and Find Full Text PDFMar Environ Res
January 2025
University of Technology Sydney, The School of Life Sciences, Ultimo, NSW, 2007, Australia. Electronic address:
Antibiotic resistant bacteria are increasingly being found in aquatic environments, representing a potential threat to public health. To examine the dynamics and potential sources of antibiotic-resistant genes (ARGs) in urbanised waterways, we performed a six-month temporal study at six locations within the Sydney Harbour estuary. These locations spanned a salinity gradient from seawater at the mouth of the harbour to freshwater at the more urbanised western sites.
View Article and Find Full Text PDFWaste Manag
January 2025
School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 China.
This study addresses the challenge of reducing "net" toxic pollutant discharge, specifically dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), while minimizing the energy consumption and costs associated with detoxification. Our research focuses on reintroducing fly ash and scrubber sludge (ASR) into a hazardous waste thermal treatment system equipped with gasification-intense low oxygen dilution (GASMILD) and an advanced air pollution control system (APCS). This approach yielded a remarkable PCDD/F removal efficiency exceeding 99.
View Article and Find Full Text PDFPeerJ
January 2025
Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico.
The average annual water availability worldwide is approximately 1,386 trillion cubic hectometers (hm), of which 97.5% is saltwater and only 2.5% is freshwater.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, India.
This study provides a detailed approach to evaluating water quality in the Haridwar district, Uttarakhand, India, by integrating physicochemical and microbiological investigations. It employs multivariate analysis and applies water quality and trophic state indices to evaluate the current state of the water and identify potential sources of contamination. The results from the correlation matrix highlight the dynamic interactions between different water quality parameters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!